
ZX-calculus and Surface Code Lattice Surgery

Internship Report

Yicheng Zhou

August 30, 2019

Contents

1 ZX-calculus 2
1.1 ZX-graph . 2
1.2 Axiomatization and completeness . 2
1.3 Useful identities . 3

2 Surface code lattice surgery 3
2.1 ZX-graph and lattice surgery . 3

3 Pauli-Fusion model 4
3.1 Definitions and properties . 4
3.2 An efficient algorithm for finding PF-flows . 5

4 Lattice surgery implementation of ZX-graph 6
4.1 Problem description: split-merge only once . 6

4.1.1 First description . 6
4.1.2 Other representations of data . 7
4.1.3 Re-interpretation . 9

4.2 Problem description: split-merge several times . 10
4.2.1 Continuity condition . 11
4.2.2 Preparation and measurement . 12
4.2.3 Simple decomposition (or break-down) of ZX-graph . 13
4.2.4 Problem description . 14

4.3 Complexity . 15
4.3.1 Reduction from 3-partition to LSHerr[Opt] . 15
4.3.2 Reduction from 3-partition to LSHerr[Exist] . 16
4.3.3 Reduction from LSHerr to LSSimple . 16
4.3.4 NP-completeness . 16
4.3.5 An upper bound . 17

5 Summary 17

1

1 ZX-calculus

ZX-calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum in-
formation theory. ZX-calculus consists of ZX-graphs and a set of axioms, where ZX-graphs represents
linear maps and the axioms tell us which ZX-graphs represent the same linear maps. For its introduction
(axiomatization, completeness), we refer to [JPV19].

1.1 ZX-graph

Roughly speaking, ZX-graphs are generated by (1) usual edges; (2) Hadamard gates; (3) constructive units
of the following type representing linear map ∣0⟩⊗m ⟨0∣⊗n + eiα ∣1⟩⊗m ⟨1∣⊗n:

We denote such vertices as spg(n,m,α), meaning "green spider" with n input "legs" and m output "legs"
and phase α. α is omitted if it is zero. By changing green to red, we simply change the base to ∣±⟩ and spg
to spr.

Sometimes, it is more convenient to represent an edge with one Hadamard gate by a blue edge as is
done in PyZX, which is a free and open source software that allows users to efficiently rewrite ZX-diagrams
using built-in simplification strategies [KvdW19].

For finitely many linear maps represented by ZX-graphs, doing the tensor product ⊗ is equivalent to
putting ZX-graphs abreast vertically, the composition ○ is equivalent to putting ZX-graph abreast horizon-
tally in order and connecting the corresponding open edges.

Sometimes, we consider only the ZX-graphs with angle (or phase) α in some restricted set, for example,
π
2Z,

π
4Z, etc. With such restrictions, the sub-ZX-calculi are called, for example, the π

2 -fragment, the π
4 -

fragment of the general ZX-calculus.

1.2 Axiomatization and completeness

Axioms can help us simplify a ZX-graph. Below in Figure 1 are some axioms frequently used in practice. We
hope to have completeness of ZX-calculus requires that for any two equivalent ZX-graphs (i.e. representing
the same map), we can transform one to the other by applying axioms for finitely many times. However,
we may have to add other axioms and obtain the following results [JPV19]:

1. The axioms in Figure 1 is complete for the π
2 -fragment;

2. With four additional axioms, the π
4 -fragment is complete;

3. By adding only one additional axiom to the π
4 -fragment, we obtain the completeness of the general

ZX-calculus.

2

Figure 1: [JPV19] A set of axioms for ZX-calculus.

1.3 Useful identities

Here are some useful identities of ZX-calculus that one may use frequently:

spg(n,1) ○ spg(1,1, α + β) ○ spg(1,m) ≡ spg(n,1, α) ○ spg(1,m,β) ≡ spg(n,m,α + β)

(Hadamard)⊗n ○ spg(n,m) ○ (Hadamard)⊗m ≡ spr(n,m)

(red π-phase)⊗n ○ spg(n,m,α) ○ (red π-phase)⊗m ≡ spg(n,m,−α)

where ≡ means equality modulo constant factors and the composition ○ of ZX-graphs is consistent with
their relative positions.

2 Surface code lattice surgery

We consider here planar surface code, which is a stabilizer code whose stabilizers are represented by small
units. So it uses many physical qubits to encode one logical qubit. It has a high estimated error correction
threshold of 1%, a simple error correction procedure and allows a simple approach to magic state distillation
[dBH17],[Lit18]. For basics of surface code and split merge operations, we refer to [HFDVM12]. There,
we have an explicit example of performing CNOT using split-merge. We can represent it in a somewhat
abstract way as follows, where green edges stand for Z-logical operators and red for X:

2.1 ZX-graph and lattice surgery

With ZX-calculus, we can simplify a quantum circuit in, for example, depth, T-counts, etc. However, the
result of simplification is usually a ZX-graph of degree greater than 3. But ZX-graph of a CNOT has degree
3, so the physical realization of ZX-graph seems a problem. However, we can interpret the constructive
unit sp(n,m,α) as a merge sp(n,1) plus a one-qubit rotation sp(1,1, α) plus a split sp(1,m) (section 1.3).

For a one-qubit patch, there are two Z-edges and X-edges. If we put n patches in a horizontal line, with
horizontal X-edges and vertical Z-edges, then measure out the stabilizers between each pair of neighbouring

3

Figure 2: Lattice surgery implementation of CNOT (1 controls 2). The blue areas represent measurements of
stabilizers in the first three schemata, Z-measurement in the fourth.

patches, then we are actually measuring the mutually commuting operators Z1Z2, Z2Z3, . . . , Zn−1Zn. On
the one hand, this is a merge of n patches along Z-edge. On the other hand, this operation is represented
by spg(n,1) except that there are perhaps error correction vertices π-phases on some n − 1 input edges,
which can be calculated from the measurement results of Z1Z2, Z2Z3, . . . , Zn−1Zn. Similarly for split, and
for split and merge along X-edge. So we have

Lemma 2.1. Modulo error correction π-phases, spg(n,1), spg(1,m) represent respectively merge of n
patches along Z-edge and split of a patch as m patches along Z-edge. For spr, just change Z to X.

3 Pauli-Fusion model

We have seen that for lattice surgery, we must do en error correction before we detect the error, so it is
physically unrealistic in practice. However, Pauli-Fusion context allows us to tackle this problem. The
following part is essentially the same as in [dBDHP19], but we give its modified version in the case where
Hadamard gates are represented by blue edges and all red vertices are changed to green by conjugation with
Hadamard gates (i.e. changing color of edges).

3.1 Definitions and properties

Lemma 3.1. [dBH17] A smooth merge operation (i.e. merge along Z-edge) can be represented by

where the error π-phase can be on either input edge. For a rough merge (i.e. along X-edge), just interchange
the colors.

This can explain why we have to prepare a ∣+⟩ patch for extending a given patch by a merge. This
amounts to plug a green node to ZX-graphs above:

In ZX-calculus, for a green vertex with phase α totally surrounded by red π-phase, we can remove all these
π-phase by negating α as −α (section 1.3). In particular, for a green node with phase 0, these red π-phases
are simply absorbed. Therefore the above two ZX-graphs are equivalent, which means no error correction
is needed in this case.

4

In a general merge represented as in Lemma 3.1, however, we cannot propagate the error correction
node π-phase (by applying identities in section 1.3) to make two input edges "clean": at least one of the
two input edges contains an error π-phase. Therefore, we must do an error correction before we detect the
error, which is physically impossible.

Nevertheless, in a larger ZX-graph where there exist other nodes, it is possible to propagate π-phase to
somewhere "later" than this merge. For example in the following ZX-graph representing CNOT (Figure
3), we can propagate the error π-phase for w to the edge below (by section 1.3), so that we can do split
at v, then merge at w, finally correct the error π-phase later on the edge below if needed. For a CZ gate
(just turn the red vertex green and turn the edge between two green vertices Hadamard), it is essentially
the same since we have H ○X = Z ○H.

Figure 3: Error correction for CNOT implemented by lattice surgery: the red arrow shows the propagation of the
error correction vertex produced at merge w to somewhere that can be "later" than w.

The Pauli-Fusion model is meant to make this idea explicit. We modify the definition of graph-like
ZX-graph in [dBDHP19] as follows, while the other definitions, properties and theorems, such as definitions
of corrector and PF-flow, the procedure of error correction, etc., stay the same as in [dBDHP19].

Definition 3.1 (Substitution for Definition 7 in [dBDHP19]). A (labelled) ZX-graph is in a graph-like form
(or is graph-like) if it does not have red vertices, connections between spiders of the same color, parallel
wires nor loops on any single vertex.

By turning all red vertices in green and changing the corresponding edge types, condensing all spiders,
and removing all loops and (pairs of) parallel edges, it is easy to show that:

Lemma 3.2. [dBDHP19] Any ZX-graph can be transformed into a graph-like ZX-graph.

Remark 3.1. PF-Flow is not unique, even modulo order-preserving isomorphism. For example for a CNOT
represented as above, each of green and red vertices can precede the other.

3.2 An efficient algorithm for finding PF-flows

Theorem 3.3. Given a graph-like ZX-graph D, there is a polynomial time algorithm to decide whether it
has a PF-flow and to construct a PF-flow if one exists.

Proof. The algorithm PF-FLOW FINDING given below satisfies the conditions. The general idea is search-
ing backwards vertices that can be corrected "later".

5

Data: Signature (GD,I ,O,P) of a graph-like ZX-graph D.
Result: Construct a PF-flow if one exists, else return "No solution!".
initialization:

M ∶= O, set of marked elements;
δM ∶= O, set of newly marked elements;
⪯ ∶= {(u,u) ∶ u ∈ V (GD)}, partial order relation on M ;
f ∶= ∅, function on the empty subset ∅ ⊂ V (GD);
C ∶= ∅, empty set of corrector-sets.

repeat
Reset δM = ∅;
Set R = {u ∈ V (D)/M ∶ ∃ a set Cu ⊂M ⋃P such that Odd(Cu)/M = {u}};
Treated ∶= ∅, set of vertices treated in this repeat loop;
for v ∈ V (D)/M do

if v ∈ Treated then skip to the next v.;
Let Nv ∶= N(v)⋃{v} if N(v)⋂M = ∅, otherwise ∶= N(v)/M ; vertices to test correctability;
Let Fv ∶= Nv/R, set of non-correctable vertices "nearby" to v;
if #Fv ≤ 1 and v ∉ Fv then

δM ∶= δM ⋃{v}, add v to the set of newly marked elements;
For each u ∈ Nv⋂R, let Cu,v = Cu as constructed above, and update C ∶= C⋃{Cu,v}.

end
Update f ∶= f ⋃{(v,w)} if Fv = {w}, otherwise ∶= f ⋃{(v,m)} with m picked in M ;
Update Treated ∶= Treated ⋃Nv;

end
Update the partial order ⪯ ∶=⪯ ⋃(δM ×M);
Update the set of marked elements N ∶=M ⋃ δM .

until δM = ∅;
return (⪯, f,C) if V (D) ⊂M , otherwise (∅,∅,∅).

Remark 3.2. There are two uncertainties: (1) the order in which we go through V (D)/M at line 13; (2) the
m we picked fromM at line -7. It is not clear whether a "good" choice can be made to optimize something.

4 Lattice surgery implementation of ZX-graph

From now on, we will consider only executable ZX-graphs in the sense of Pauli-Fusion context, but we
must keep in mind that error corrections can always take place even though it is not our main topic in the
following sections.

4.1 Problem description: split-merge only once

When we do several splits and then several merges just once, we are led to consider the decision problem
defined in [HND17], which we shall reformulate and consider alternatively in order to generalize it to general
ZX-graphs. We denote this problem by LSHerr[Opt].

4.1.1 First description

We will reformulate LSHerr[Opt] as well as formulate LSHerr[Exist], similar to the previous one but in
addition having space cost in its input.

6

To be a little wordy: the problem is a non-physical description of executing multi-target CNOTs on
surface lattice. Though we will not cover the terms like "multi-target" nor "CNOT", "qubit", keeping in
mind the picture of split and merge of qubit patches is always good for understanding the problem.

Our objective is to minimize the surface area of a lattice which consists of individual patches of the
same size and placed in a regular way.

Starting with data description: on a surface lattice, some patches are respectively assigned an integer
qi,j . Furthermore, multiple patches can have the same integer, but {qi,j}j forms a set for any fixed i (i.e.
qi,j ≠ qi,k for j ≠ k and for any i). A horizontal (vertical) neighbour of a patch is defined as the next
nonempty patch (i.e. assigned with an integer) to the right or left (up or down),so it is in fact a reciprocal
relation between two patches.

Definition 4.1. A configuration of {qi,j} on surface lattice is valid if it satisfies the following conditions:

(LS1) All qi,j have to be placed;

(LS2) For each i, qi,j form a chain of horizontal neighbours;

(LS3) For each j, qi,j form a chain of vertical neighbours.

One can imagine that this visualizes the split and merge, where for each j, the patches {qi,j}j together
with their intermediate patches formed the big patch that encodes the qubit j before splitting, and for each
i, the patches qi,j with the same number together with their intermediate patches will form the big patch
that encodes the qubit corresponding to the value qi,j after the merge. See Figure 4 for example.

We want to minimize the area of the lattice surface which allows a valid configuration of qi,j . Of course,
we have a theoretical optimality of area Mopt given by the total number of qi,j (multiplicities counted), i.e.

Mopt =#{(i, j) ∣ qi,j is given}.

Now we can formulate two decision problems as follows:

LSHerr[Opt] Given data {qi,j}, can we find a valid configuration of qi,j on some surface lattice that
reaches the theoretical optimality Mopt?

LSHerr[Exist] Given data {qi,j} and a surface lattice of size R ×K, can we find a valid configuration of
qi,j on it?

It seems that the second problem is more reasonable, because due to the structure of the high-level
circuit that needs to be compiled, it is not always possible to reach the theoretical optimum Mopt [HND17].
Therefore we will focus more on LSHerr[Exist]: given a fixed size space of patches, can we implement the
given multi-target CNOTs in parallel?

4.1.2 Other representations of data

We give other representations for LSHerr problems so that we can generalize it to the case of many layers.

Representation as tuple of sets Given data {qi,j}, let Qi = {qi,j}j , and Q = ⋃i∈I Qi where I is the
index set for i. Then we have a obvious bijection:

{qi,j} ←→ tuple of finite sets I, Q, {Qi ⊂ Q}i∈I .

We will frequently mix the usage of these two representations.

7

Figure 4: [HND17]. Here multi-target CNOTs are implemented using LS. During initialization three patches of
surface code with N by 7N qubits are created, which are then split and merged to perform the computation.
The faded boxes indicate ancillary qubits. An optimized version of this circuit is shown at the bottom
where the placement of the patches ensures a minimal bounding box of the whole circuit area. This
circuit can achieve the theoretical optimality.

8

Representation as simple ZX-graph Given data (I,Q,{Qi}i) (as defined above), we construct ZX-
graph G(I,Q,{Qi}i) as follows (see Figure 5 for example):

1. choose #I inputs respectively connected to i ∈ I put in the first columns;

2. put q ∈ Q in the second column and connect them respectively to #Q outputs by Hadamard
edge;

3. join i and q by a Hadamard edge if q ∈ Qi.

During this construction, we treat I and Q as "mutually disjoint sets": for example, if x appears both in
I and in Q, there will be two vertices in ZX-graph of x, but with different superscripts (Figure 5). We call
the ZX-graphs that can be constructed from such representation simple ZX-graphs. Obviously, we have a
one-to-one map (modulo superscripts)

(I,Q,{Qi}i)←→ G(I,Q,{Qi}i).

Inputs

1I

2I

3I

1Q

2Q

3Q

4Q

5Q

6Q

7Q

Outputs

(a)

Inputs

1I

2I

3I

1Q

2Q

3Q

4Q

5Q

6Q

7Q

Outputs

(b)

Figure 5: (a) Example of representation of data Q1 = {2,6,7},Q2 = {1,5,6},Q3 = {3,4,5} by ZX-graph. Since
I = {1,2,3} intersects Q = {1, . . . ,7}, we use superscripts I,Q to differ them from each other. When
we read the corresponding lattice surgery implementation (Figure 6), we can think it as (b) split along
Z-operator then merge along X; or (a) split along Z-operator, perform Hadamard gates with "twist" (i.e.
relabeling edges: X ↝ Z and Z ↝X [LO18]), then merge along Z. The Hadamard gates of connected to
outputs are not performed.

4.1.3 Re-interpretation

Given a simple ZX-graph, i.e. a ZX-graph of the form G(I,Q,{Qi}i) that comes from data (I,Q,{Qi}i)
for LSHerr, how can we implement this ZX-graph using lattice surgery, minimizing the space cost while
doing splits in parallel and the same for merges?

For the purpose of parallelizing splits, we have to put the involved patches in some sort of chains on the
surface lattice. The simplest way is to put them all in the same, for example, row. Since a Hadamard gate
has to be performed before a split patch is merged with others, we do it in software as described in [LO18]
by exchanging Z-logic qubit and X-logical qubit. As a result, if now we do merges, they have to be done
along the direction of columns and the patches to merge together form a vertical chain. The best situation
is that, such chains do not intersect each other, or we can say such chains consists of "horizontal/vertical
neighbours". This is exactly the content of (LS2), (LS3).

9

Therefore, from now on, in our implementation, we fix one split direction (horizontal), and one merge
direction (vertical), so that the splits and merges are realized for a chain of patches in the respective
direction. Thus, on a surface lattice, we always split a patch to some patches in the same row, and the
patches we merge are always in the same column.

Under this convention, for a simple ZX-graph G(I,Q,{Qi}i) with I ⋂Q = ∅, a valid configuration for
(I,Q,{Qi}i) gives naturally a split-merge procedure, illustrated in Figure 6, described as follows:

1. For i ∈ I, put the patch of input for i in the same row ρ(i) as {qi,j}j ;

2. Split i to patches of {qi,j}j in the same row, putting qi,j at row ρ(i), column κ(q) if qi,j = q ∈ Q;

The function ρ is defined on I, and κ is defined on Q. Therefore, no matter in which Qi belongs q (perhaps
not unique), the corresponding qi,j = q is always put in the column κ(q).

1I ∣+⟩ ∣+⟩

∣+⟩ 2I ∣+⟩

∣+⟩ ∣+⟩ 3I

(a) prepare I

2Q 6Q 7Q

1Q 6Q 5Q

3Q 4Q 5Q

(b) split I to Q

2Q ∣0⟩ 7Q

1Q 6Q ∣0⟩

3Q 4Q 5Q

(c) merge Q

Figure 6: An example of so-called natural split-merge implementation of ZX-graph in Figure 5. First, we get a
valid configuration of Qi, i ∈ I on the 3 × 3 surface lattice as in (b), from which we get the row-function
ρ ∶ 1I ↦ 1,2I ↦ 2,3I ↦ 3 and the column function κ ∶ 1Q ↦ 1,2Q ↦ 1,3Q ↦ 1,4Q ↦ 2,5Q ↦ 3,6Q ↦
2,7Q ↦ 3. Then we (a) prepare the patch for i ∈ I according to ρ; (b) split i to Qi, putting q ∈ Qi at row
ρ(i) and column κ(q); (c) merge the patches with the same number while keeping them respectively in
the same column as in (b).

We call such functions ρ and κ respectively row-function and column-function, and by a natural im-
plementation, we mean such a split-merge implementation of a simple ZX-graph obtained from a valid
configuration for (I,Q,{Qi}i). We have therefore an one-to-one correspondence:

valid configurations of (I,Q,{Qi}i)←→ natural implementations of G(I,Q,{Qi}i).

We consider the two following statements as equivalent (both will be called LSHerr[Exist]):

(a) (I,Q,{Qi}i) admits a valid configuration on R ×K surface lattice;

(b) G(I,Q,{Qi}i) has a natural implementation on R ×K surface lattice.

Note that a valid configuration and the corresponding natural implementation share the same ρ and κ.
When we read a lattice surgery implementation like Figure 6, we can think it as in Figure 5(b) split

along Z-operator then merge along X; or as in Figure 5(a) split along Z-operator, perform Hadamard gates
with "twist" (i.e. relabeling edges: X ↝ Z and Z ↝ X [LO18]), then merge along the new Z-edge. The
Hadamard gates of connected to outputs are not performed.

4.2 Problem description: split-merge several times

Conventions:

(1) Here we only consider the ZX-graph whose vertices other than inputs and outputs are green, and are
connected to each other only by Hadamard edges (otherwise we can merge together the two endpoints
of such an edge by axiom (S) of ZX-calculus [JPV19]).

10

(2) We suppose the ZX-graph we are going to consider is equipped with a Pauli-Fusion flow whose time-
ordering is given by the column number of vertices in the planar ZX-graph (increasing from left to
right).

(3) We are not interested in the angle of Z-rotations in this section, even though such rotations may need
additional space cost. The same for additional Hadamard gates that appear between two layers of a
simple decomposition (defined below).

Given such a ZX-graph, we can break it down to several small components, each of them being a simple
ZX-graph, i.e. in the form G(I,Q,{Qi}i). We will first consider how to join different pieces, propose
continuity conditions, then describe the exact procedure of this break-down or simple decomposition.

4.2.1 Continuity condition

If we do split-merge several times consecutively, we are not performing operations on all the patches at each
time step. So, some patches among outputs of the previous split-merge, should be treated as occupied and
inactive, so it seems that we have to put more constraints on surface lattice for the next split-merge:

(1) a chain of horizontal neighbours cannot pass through inactive patches;

(2) if an inactive patch is already labelled by q ∈ Q, then all patches corresponding to q split from I
must be placed in the same column as the inactive patch;

(3) during the merge, merge all patches, including inactive patches.

Simply speaking, inactive patches "form an obstruction" on surface lattice. It seems natural to extend
LSHerr[Exist] to such case, but we can do it in another way. In fact, we can treat inactive patches as
"active", i.e. participating in the split-merge: denote by Q∗ ⊂ Q the subset consisting of labels that already
exist on the surface lattice (these will participate in merges) and by D the set consisting of "dummy" labels
(these will not participate in split nor merge, and will be treated as "split and then merge to themselves").
We modify the conventional data (I,Q,{Qi}i) for LSHerr[Exist] as follows:

I I ⊍Q∗
⊍D, Q Q⊍D,

{Qi}i∈I {Qi}i∈I ⊍{{q∗} ∶ q∗ ∈ Q∗} ⊍{{d} ∶ d ∈D}.

We will denote the new data by µ(I,Q,{Qi}i;Q∗,D) and call it the modified form.
Now it is time to "connect" two split-merge processes. However, one disadvantage of this modified form is

that, we have lost information of the original configuration in exchange for flexibility of patch configuration.
For example, continuing our split-merge in Figure 6, we do split-merge with data I = {3,4},Q = {5,6},Q3 =

{6},Q4 = {5,6}. A natural implementation with the modified data with Q∗ = {5,6},D = {1,2,7} is shown
in Figure 7, we see that it is impossible to modify the merge process of Figure 6 and the column arrangement
of Figure 7(a) to make them coherent (ignoring the superscripts). In fact, one checks easily that starting
from Figure 6(b), we can never make it on the same 3×3 surface lattice even by rearranging the split-merge
in Figure 7.

To deal with this loss of information, we introduce a concept of "continuity condition": for two con-
secutive split-merge operations with data (I(1),Q(1), {Q(1)i }i), (I

(2),Q(2),{Q(2)i }i) and row-functions and
column-functions ρ(1), κ(1), ρ(2), κ(2), the continuity condition means:

Continuity of sets: (I(2),Q(2),{Q(2)i }i) is in the modified form as described above, and Q(1) = I(2).
Continuity of positions: it is feasible to do "merge Q(1)" step by placing q ∈ Q(1) in row ρ(2)(q) in

a valid way, i.e. without arousing any intersection of vertical chains with other q ∈ Q(1).

11

2I 4I ∣+⟩

1I 6I 5I

3I ∣+⟩ 7I

(a) prepare I

2Q 6Q 5Q

1Q 6Q 5Q

∣+⟩ 6Q 7Q

(b) split I to Q

2Q ∣0⟩ ∣0⟩

1Q 6Q 5Q

∣0⟩ ∣0⟩ 7Q

(c) merge Q

3I

4I

5Q

6Q

(d) ZX-graph

Figure 7: An example of natural split-merge implementation of ZX-graph (d) as continuation of that of Figure 6,
with I = {3,4},Q = {5,6},Q∗ = {5,6} and inactive patches D = {1,2,7}. From (a) we get the row-function
ρ ∶ 1I ↦ 2,2I ↦ 1,3I ↦ 3,4I ↦ 1,5I ↦ 2,6I ↦ 2,7I ↦ 3. From (b) or (c) we get the column function
κ ∶ 1Q ↦ 1,2Q ↦ 1,5Q ↦ 3,6Q ↦ 2,7Q ↦ 3.

More on continuity: remember that, in the "merge Q(1)" step, only the columns are fixed by κ(1),
leaving space for choice of rows. On the contrary, In the "prepare I(2)" step, it is the rows that are fixed by
ρ(2). If the continuity of positions holds, one will find that the configuration after "merge Q(1)" is exactly
the same as that after "prepare I(2)", therefore two split-merges can be done continuously and coherently.
In this case, we say the sequence of the latest configurations C(1),C(2) for two sets of data is continuous,
or we can say it is a continuous version of the original sequence. See Figure 8 for a positive example.

However, we point out a shortness of this: while connecting two implementations, we need to perform
at least the Hadamard gates connected to outputs in Figure 5(a), which rotate the patches and put them in
the right split direction (i.e. put split horizontally) for the next implementation (see the caption of Figure
5), all of which demand additional space on the surface lattice. In our problem formulation below, we
simply ignore this consideration of additional space cost.

2Q ∣0⟩ 7Q

1Q 6Q 5Q

∣0⟩ 4Q ∣0⟩

3Q

(a) merge Q, cf. Figure 6(c)

2I 7I

1I 6I 5I

4I ∣+⟩

3I ∣+⟩

(b) prepare I

2Q 7Q

1Q 6Q 5Q

6Q 5Q

∣+⟩ 6Q

(c) split I to Q

2Q 7Q

1Q ∣0⟩ 5Q

6Q ∣0⟩

∣0⟩

(d) merge Q

Figure 8: An example of natural split-merge implementation of ZX-graph Figure 7(d) on 4 × 3 surface lattice,
satisfying the continuity condition with Figure 6. More precisely, on 4 × 3 surface lattice, we can modify
Figure 6(c) as (a) here, ρ(1), κ(1) staying the same as in Figure 6; for implementation of Figure 7(d),
we do (b)-(d) here rather than in Figure 7(a)-(c), thus with ρ(2) ∶ 1I ↦ 2,2I ↦ 1,3I ↦ 3,4I ↦ 3,5I ↦
4,6I ↦ 2,7I ↦ 1 and κ(2) ∶ 1Q ↦ 1,2Q ↦ 1,5Q ↦ 3,6Q ↦ 2,7Q ↦ 3. As a result (a) and (b) has the
same configuration of numbers (regardless of superscripts), which means continuity condition holds for
our choice of ρ(1), κ(1), ρ(2), κ(2) here.

4.2.2 Preparation and measurement

For further discussion, it is worth taking into consideration the case with qubit preparation and measure-
ment. Suppose we have to do two split-merges (I(t),Q(t), {Q(t)i }i), t = 1,2 one by one. For each t = 1,2, we
have to prepare Ip(t) ⊂ I(t) before split-merge and measure out Qm(t) ⊂ Q(t) after split-merge, respectively.

12

Therefore, we are just sandwiching the split-merge by preparation and measurement, so the definitions for
row-function, column-function and Q(t)i stay unchanged.

However, the continuity conditions are updated naturally and reasonably as follows:
Continuity of sets: (I(2),Q(2),{Q(2)i }i) is in the modified form, and Q(1)/Qm(1) = I(2)/Ip(2).
Continuity of positions: it is feasible do "merge Q(1)" step by placing q ∈ Q(1) in row ρ(2)(q) in a

valid way for q ∈ Q(1)/Qm(1), i.e. without arousing any intersection of vertical chains of other q.
More on continuity: f the continuity conditions hold, one will find the configuration after "merge

Q(1)" and measurement is exactly the same as that after "prepare I(2)", therefore two split-merges can be
done continuously and coherently. In this case, we say the sequence of the latest configurations C(1),C(2)

for two sets of data is continuous, or we can say it is a continuous version of the original sequence.
For a possibly longer sequence of configurations of simple ZX-graphs, we can define the corresponding

continuity conditions respectively as the conjunction of those of sub-sequences of two consecutive configu-
rations.

4.2.3 Simple decomposition (or break-down) of ZX-graph

We first give a general description, then give an example of two layers (to be defined below). Our basic
idea of break-down is to keep those patches resulting from splits but not yet merged, even if they might not
participate in the next merge. These are patches with which we do nothing for the moment, i.e. inactive
or "dummy" patches as we called them in previous paragraphs.

Notation

1. V : set of vertices of the ZX-graph;

2. E : set of edges;

3. t(⋅) : time-ordering given by columns in ZX-graph, suppose Image(t) = {1, . . . , T + 1};

4. pred(v) = {u ∈ V ∶ uv ∈ E, t(u) < t(v)} : function that gives predecessors of a vertex v;

5. post(v) = {u ∈ V ∶ uv ∈ E, t(u) > t(v)} : function that gives successors of a vertex v;

6. Vt = {v ∈ V ∶ t(v) = t} : set of vertices at time t;

7. V prepare
t = {v ∈ Vt ∶ pred(v) = ∅} : set of vertices to prepare at time t;

8. V measure
t = {v ∈ Vt ∶ post(v) = ∅} : set of vertices to measure at time t;

9. Postt = ⋃v∈Vt post(v): resulting patches of splits at time t; we define this because sometimes we have
a vertex splitting to another vertex much later in time.

We decompose a ZX-graph as a sequence of simple ZX-graphs. Each of them is called a layer . There
are in total T layers, parametrized by {(t, t + 1)}t or simply by t. For the layer (t, t + 1), the data in the
modified form (i.e. concerning all patches present on the surface lattice) (I(t),Q(t),{Q(t)i }i∈I(t)) and the

13

1

2

3

6
α

7

4

5

8
β

9

10

(a)

1

2

3

6

7

4

5

8

9

10

α
6

7

4

5

8

9

10

4

5

8

9

10

β

(b)

Figure 9: An example of simple decomposition of ZX-graph. We have decomposed (a) as (b), where shadowed boxes
represent the simple ZX-graphs. There are phase gates between them but no intermediate preparation
or measurement.

extra data Ip(t),Qm(t) are given recursively by:

I(t) = (Q(t−1)/V measure
t)⋃V prepare

t ;

Ip(t) = V prepare
t ;

Q(t) = (I(t)/Vt)⋃ (Vt+1/V prepare
t+1)⋃Postt;

Qm(t) = V measure
t+1 ;

Q
(t)
i = {

post(v) v ∈ Vt
{i} otherwise.

They are defined to be ∅ for t≪ 0. One verifies easily that the continuity of sets (in the sense of 4.2.2) are
satisfied.

Definition 4.2. The above decomposition into simple ZX-graphs is called the simple decomposition of this
ZX-graph.

Now we can implementing a ZX-graph by a sequence of implementations of simple ZX-graph of each
layer, except that while connecting these implementations, we need to perform one-qubit gates, including
rotations that put the square patches in the right split direction (i.e. put split horizontally) for the next
implementation, all of which demand additional space on the surface lattice. In our problem formulation
below, we simply ignore this consideration of additional space cost. Nevertheless, we show these one-qubit
gates in the example Figure 9.

4.2.4 Problem description

Definition 4.3. For a ZX-graph, a simple split-merge implementation is a continuous sequence of con-
figurations {C(t)}t on some surface lattice, where C(t) is a valid configuration of layer t of the simple
decomposition of this ZX-graph.

It is heuristically natural and reasonable to define the theoretical optimum Mopt of a ZX-graph as the
maximum of M (t)

opt, theoretical optimum for layer t in the simple decomposition.
We have the following problems:

14

LSSimple[Opt] Given a ZX-graph, can we find a simple split-merge implementation that reaches its
theoretical optimality Mopt?

LSSimple[Exist] Given a ZX-graph and a surface lattice of size R ×K, can we find a simple split-merge
implementation on it?

4.3 Complexity

In [HND17], the authors proved the NP-completeness by a clever reduction to the NP-complete 3-partition
problem [GJ90]:

Given a set of non-negative integers A = {ai}1≤i≤3s and another non-negative integer L such
that L

4 < ai <
L
2 for all i and ∑i ai = sL, decide whether A can be partitioned into s subsets

A1, . . . ,As such that ∑i∈Aj
ai = L for all j.

4.3.1 Reduction from 3-partition to LSHerr[Opt]

Given data A as above for 3-partition, we have to define data f(A) for LSHerr[Opt] (of course, f(A) is
also part of data for LSHerr[Exist]).

First, take sL consecutive integers s+2+L+1, . . . , s+2+L+sL, which are different from 1, . . . , s+2+L;
then divide them into 3s groups {qi,j}j , 1 ≤ j ≤ 3s, whose cardinals are given by A, i.e. we have #{qi,j}j = ai
for all i. The choice of division is arbitrary, but we just cut them in sequence just to make it simple. Now
we are ready to define f(A) as

{1, s + 2, s + 3, . . . , s + 2 +L},

{2, s + 2}, {3, s + 2}, . . ., {s + 1, s + 2},

{qi,j}j for all i as defined above.

Lemma 4.1. [HND17] f gives a polynomial-time reduction from 3-partition to LSHerr[Opt] .

Sketch of proof. By the construction above, f is obviously a polynomial-time operation.
For the "reduction" part, we first calculate the theoretical optimum

Mopt = (2 +L) + s ⋅ 2 +∑
i

#{qi,j}j = (s + 1)(L + 2).

On the other hand, due to the repetitive occurrences of the number s + 2 and the length of {1, s + 2, s +
3, . . . , s + 2 + L}, the surface lattice that supports a theoretically optimal configuration must have at least
s + 1 rows and L + 2 columns. Therefore, an optimal surface lattice must have the size (s + 1) × (L + 2).

Furthermore, on such a surface lattice (Figure 10), the set {1, s+ 2, s+ 3, . . . , s+ 2+L} must occupy one
entire row, and s+2 must fill out one entire column. By putting the set {1, s+2, s+3, . . . , s+2+L} on the top
row and the sets {2, s+2}, {3, s+2}, . . ., {s+1, s+2} along the left side (it is always better to do so in order
to fit the other sets into the rest space), one gets an "almost" bijection between all possible 3-partitions of
A and configurations of {qi,j}j into the rest space (modulo permutation of rows and permutation of patches
in each row). This means that f gives indeed a reduction.

Lemma 4.2. If f(A) ∈ LSHerr[Opt] and C is a valid configuration that reaches the theorectical optimality,
then we can obtain a 3-partition of A in polynomial time (polynomial in terms of A, f(A) or the size of
surface lattice for configuration C).

15

1 s + 2 s + 3 s + 4 ⋯ s + 2 +L

2 s + 2 ai1 patches ⋯ ai2 patches

3 s + 2 ⋱

⋮ ⋮ ⋱

s + 1 s + 2 aj1 patches ⋯ aj2 patches

Figure 10: Reduction from 3-partition to LSHerr[Opt]. The set {1, s + 2, s + 3, . . . , s + 2 +L} occupies the first

row while the sets {2, s + 2} , {3, s + 2} , . . ., {s + 1, s + 2} are put along the left side. It is always

better to do so in order to fit the other sets into the rest space, i.e. in order to find a solution for
LSHerr[Opt] with data f(A).

4.3.2 Reduction from 3-partition to LSHerr[Exist]

Now we turn to the reduction from 3-partition to LSHerr[Exist], a problem in which we are more
interested. Given data A as above for 3-partition, we use the data f(A) defined as in the reduction above.
We define the desired reduction to be

falt ∶ Az→ (f(A), Q = s + 1, K = L + 2)

(remark on notation: alt for "altered").

Lemma 4.3. falt gives a polynomial-time reduction from 3-partition to LSHerr[Exist].

Proof. By construction, falt is obviously a polynomial-time operation.
Observing that we have in fact proved in lemma 4.1 that f(A) admits a valid configuration on a

R×K = (s+ 1)× (L+ 2) surface lattice if and only if f(A) admits a valid configuration with the theoretical
optimal space cost (s+1)(L+2) (if and only if, still by lemma 4.1, A admits a 3-partition). So indeed, falt

gives a reduction.

Lemma 4.4. If falt(A) ∈ LSHerr[Exist] and C is a valid configuration that reaches the theoretical opti-
mality, then we can obtain a 3-partition of A in polynomial time (polynomial in terms of A, falt(A)).

4.3.3 Reduction from LSHerr to LSSimple

From our definition of LSSimple and the re-interpretation of LSHerr in terms of simple ZX-graph, we find
a natural embedding from LSHerr to LSSimple which is the identity map. This is of course a polynomial
reduction from the first to the latter.

4.3.4 NP-completeness

Proposition 4.5. LSHerr[Opt,Exist] and LSSimple[Opt,Exist] are NP-complete.

Proof. They are NP-hard because all of them admit a polynomial reduction to the NP-complete problem
3-partition. They are NP because in fact we can take valid (or not in the negative case) configurations as
polynomial size certificates, or we can give a non-deterministic polynomial algorithm.

16

4.3.5 An upper bound

What if we add additional constraints? For example, we wonder whether there exist two "good" functions
R(G) and K(G) of ZX-graph G such that the following problem is "easier":

LSSimple[R(⋅)K(⋅)] Given a ZX-graph G, can we find a simple split-merge implementation of it on the
surface lattice of size R(G) ×K(G)?

I have no idea about this question, but at least, we have a more or less trivial upper bound for R(G)
and K(G) such that LSSimple[R(⋅)K(⋅)] is always true:

R(G) =max
t

#I(t), K(G) =max
t

#Q(t).

In this case, we can choose row-functions ρ(t) ∶ I(t) Ð→ {1, . . . ,R} and column-functions κ(t) ∶ Q(t) Ð→
{1, . . . ,K} to be injective, so that a continuous sequence of valid configurations of each layer is always
possible.

5 Summary

Given a ZX-graph, we can:

1. simplify it using PyZX;

2. find a Pauli-Fusion flow in polynomial time if one exists; otherwise decompose (or transform) the
ZX-graph such that Pauli-Fusion flow exists for all parts of it (or for the entire graph);

3. do error correction as in Figure 2 in [dBDHP19];

4. implement it by lattice surgery, or more precisely, simple split-merge implementation (section 4.2.4);

5. find possibilities of optimization.

Problems still exist:

1. Pauli-Fusion flow may not exist after simplification, even for a circuit-like ZX-graph; so usually we
have to do local simplification;

2. Uncertainty exists in PF-FLOW FINDING algorithm, and we do not know which choice is better;

3. It is hard to determine the optimal space cost for a simple split-merge implementation.

4. We have ignored the extra Hadamard gates between layers and the extra space demanded for one-qubit
phase gates shown in Figure 9(b).

17

Index

3-partition, 15

column-function, 10
continuity, 12, 13

graph-like, 5

layer, 13
LSHerr, 7, 10
LSSimple, 14, 17

modified form, 11

natural implementation, 10

row-function, 10

simple decomposition, 14
simple split-merge implementation, 14
simple ZX-graph, 9

valid configuration, 7

References

[CDD+19] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase
gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734, 2019.

[dBDHP19] Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Perdrix. Pauli fusion: a
computational model to realise quantum transformations from zx terms. arXiv preprint
arXiv:1904.12817, 2019.

[dBH17] Niel de Beaudrap and Dominic Horsman. The zx calculus is a language for surface code lattice
surgery. arXiv preprint arXiv:1704.08670, 2017.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[HFDVM12] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. Surface code quan-
tum computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.

[HND17] Daniel Herr, Franco Nori, and Simon J Devitt. Optimization of lattice surgery is np-hard. npj
Quantum Information, 3(1):35, 2017.

[JPV19] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. Completeness of the zx-calculus.
arXiv preprint arXiv:1903.06035, 2019.

[KvdW19] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagrammatic
reasoning. arXiv preprint arXiv:1904.04735, 2019.

[Lit18] Daniel Litinski. A game of surface codes: Large-scale quantum computing with lattice surgery.
arXiv preprint arXiv:1808.02892, 2018.

[LO18] Daniel Litinski and Felix von Oppen. Lattice surgery with a twist: Simplifying clifford gates
of surface codes. Quantum, 2, 2018.

18

	ZX-calculus
	ZX-graph
	Axiomatization and completeness
	Useful identities

	Surface code lattice surgery
	ZX-graph and lattice surgery

	Pauli-Fusion model
	Definitions and properties
	An efficient algorithm for finding PF-flows

	Lattice surgery implementation of ZX-graph
	Problem description: split-merge only once
	First description
	Other representations of data
	Re-interpretation

	Problem description: split-merge several times
	Continuity condition
	Preparation and measurement
	Simple decomposition (or break-down) of ZX-graph
	Problem description

	Complexity
	Reduction from 3-partition to LSHerr[Opt]
	Reduction from 3-partition to LSHerr[Exist]
	Reduction from LSHerr to LSSimple
	NP-completeness
	An upper bound

	Summary

