Relative Sen's theory and locally analytic vectors

Advisor: Prof. Wieslawa Niziol

Yicheng Zhou

August 31, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sen's theory

- Sen's operator Θ_V given by the infinitesimal action of Gal(K_{cyc}/K) on D_{Sen}(V). And Θ_V ∈ C ⊗_{Q_p} Lie(G) where G is the image of Gal(K̄/K) → GL(V).
- May replace K_{cyc} by other infinitely ramified Galois extensions over K with Galois group a 1-dim p-adic Lie group.
- Counterexample (for decompletion) in higher dimensional case.

Sen's theory

Colmez (2001), Berger-Colmez (2008): Tate-Sen's formalism.

Theorem (Berger-Colmez, 2016)

Let K_{∞}/K be a Galois extension with $G = Gal(K_{\infty}/K)$ a p-adic Lie group, which is infinitely ramified.

- 1. For any f.d. semi-linear \hat{K}_{∞} -representation W of G, we have $W = \hat{K}_{\infty} \otimes_{\hat{K}_{\infty}^{G-la}} W^{G-la};$
- 2. \hat{K}_{∞}^{G-la} is annihilated by Sen's operator $\Theta_V \in C \otimes_{Q_p} Lie(G)$ (associated with $C \otimes_{Q_p} V$, where V is a faithful Q_p -representation of G).

Locally analytic vectors

f : *U* → **Q**_p is *locally analytic* if for any x₀ ∈ *U*, one may expand

$$f(x) = \sum_{\alpha \in \mathbf{N}^d} b_{\alpha} (x - x_0)^{\alpha}$$

for all x in some small disk $B(x_0, \varepsilon) \subset U$.

- Define p-adic (locally analytic) manifolds (modelled on Z^d_p) and locally analytic functions on it.
- Let G be a p-adic Lie group, V be a Q_p-Banach representation of G. We call v ∈ V locally analytic if the function G → V, g ↦ g ⋅ v is locally analytic.

Locally analytic vectors

Let B be a \mathbf{Q}_p -Banach representation of G.

- Lie(G) acts naturally on B^{G-la} .
- Fact: if B is finite dimensional over Q_p, then B^{G-la} = B. So K-finite vectors are G-locally analytic.
- If G ≃ Z_p and there exists m such that (γ − Id)^mB[◦] ⊂ p²B[◦] for all γ ∈ G, then B is locally analytic.

Main theorem

Theorem (Lue Pan, 2020)

Let $Spa(A, A^+)$ be a small 1-dim smooth affinoid adic space over C, and $Spa(B, B^+) \rightarrow Spa(A, A^+)$ an affinoid perfectoid pro-étale Galois covering with Galois group G a p-adic Lie group. Then there exists $\theta \in B \otimes_{Q_p} Lie(G)$, unique up to A^{\times}), which annihilates B^{G-la} .

Applicable to affinoid perfectoid modular curve \mathcal{X}_{K^p} over $\mathcal{X}_{K^pK_p}$ (need log case); helps study the locally analytic sections of $\pi_{HT*}\mathcal{O}_{\mathcal{X}_{K^p}}$ over $\mathscr{F}\ell$ where $\pi_{HT}: \mathcal{X}_{K^p} \to \mathscr{F}\ell$ is the Hodge-Tate period map (Scholze).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

.

Tate-Sen's conditions (Colmez):

- 1. $B^+_{G_0,\infty}$ is almost étale over $B^+_{G_1,\infty}$ for open subgroups $G_0 \subset G_1$ of G (almost purity).
- 2. There are "trace maps" $\overline{\mathrm{tr}}_{G_0,n}: B_{G_0,\infty} \to B_{G_0,n}, n \in \mathbb{N}$ such that

$$\blacktriangleright$$
 $\overline{\mathrm{tr}}_{G_0,n}$ is $B_{G_0,n}$ -linear and fix $B_{G_0,n}$;

►
$$\overline{\operatorname{tr}}_{G_0,n}(B^+_{G_0,\infty}) \subset p^{-\varepsilon_n}B^+_{G_0,n}$$
 with $\lim_n \varepsilon_n = 0$;

- compatible with taking subgroups, conjugation and the action of G.
- 3. For any $n \in \mathbb{N}$, there is a sequence $\varepsilon_m \to 0$ such that if γ_n is a generator of $p^n \Gamma$,

Proposition (Colmez, 2001, specialised to our case) Fix $c < \frac{1}{2}$ inside $|C^{\times}|$. Let T be a Z_p -representation of G free of rank d, and $G_0 \subset G$ an open subgroup acting trivially mod p. Then for sufficiently large n, there exists a unique $B^+_{G_0,n}$ -submodule $D^+_{G_0,n}(T) \subset B^{\circ}_{\infty} \otimes_{Z_p} T$ free of rank d satisfying

- $D^+_{G_0,n}(T)$ is fixed by G_0 and stable under $G \times \Gamma$;
- $\blacktriangleright \ B^{\circ}_{\infty} \otimes_{B^{+}_{G_{0},n}} D_{G_{0},n}(T) \to B^{\circ}_{\infty} \otimes_{\mathbf{Z}_{p}} T \text{ is an isomorphism;}$
- D⁺_{G₀,n}(T) has a B⁺_{G₀,n}-basis such that the matrices of Γ is trivial mod p^c.

In particular, there exists *m* independent of *T* such that for all $\gamma \in \Gamma$, $(\gamma - 1)^m D^+_{G_0,n}(T) \subset p^2 D^+_{G_0,n}(T)$, so that $D^+_{G_0,n}(T)$ is Γ -locally analytic.

Corollary

For any f.d. Q_p -representation V of G, there exists a unique

$$\phi_V: Lie(\Gamma) \rightarrow End_{B_{\infty}}(B_{\infty} \otimes \boldsymbol{Q}_p V)$$

extending the natural action of Lie(Γ) on $(B_{\infty} \otimes_{\mathbf{Q}_{p}} V)^{G-inv, \ \Gamma-la}$. Moreover,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- 1. ϕ_V commutes with $G \times \Gamma$;
- 2. ϕ_V is functorial in V;

3.
$$\phi_{V\otimes W} = \phi_V \otimes Id + Id \otimes \phi_W.$$

Proof of corollary

- Fix c < 1/2 inside |C×|. Choose a G-stable lattice T ⊂ V and G₀ ⊂ G an open normal subgroup acting trivially mod p on T.
 By proposition,
 - $B^{\circ}_{\infty} \otimes_{\mathbb{Z}_p} T \simeq B^{\circ}_{\infty} \otimes_{B^+_{G_0,n}} D^+_{G_0,n}(T)$, compatible with G_0, n ; • $D_{G_0,n}(T)$ is Γ -locally analytic.
- ► Galois descent: $D_{G_0,n}(T) \simeq B_{G_0,n} \otimes_A D_{G,n}(T)$.
- Lie(Γ) acts linearly on

$$(\cup_{n'\geq n}B_{G_0,n'})\otimes_{B_{G_0,n}}D_{G_0,n}(T)\simeq (\cup_{n'\geq n}B_{G_0,n'})\otimes_{A_n}D_{G,n}(T)$$

thus on

$$\begin{split} (\cup_{n'\geq n}A_{n'})\otimes_{A_n}D_{G,n}(V) &= (A_{\infty}\otimes_{A_n}D_{G,n}(V))^{\Gamma-\mathsf{la}} \\ &= (B_{\infty}\otimes_{A_n}D_{G,n}(V))^{G-\mathsf{inv},\ \Gamma-\mathsf{la}} \\ &= (B_{\infty}\otimes_{\mathbf{Q}_p}V)^{G-\mathsf{inv},\ \Gamma-\mathsf{la}}. \end{split}$$

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

More on analytic functions

There exists an open subgroup G₀ < G and a continuous bijection</p>

$$c: \mathbf{Z}_p^d \to G_0, \ (x_1, \dots, x_d) \mapsto g_1^{x_1} \cdots g_d^{x_d}$$

such that $G_n := G_0^{p^n}$ is a subgroup and $c : p^n \mathbb{Z}_p^d \xrightarrow{\simeq} G_n$.

For B a Q_p-Banach representation of G, we may define C^{an}(G_n, B) using the above homeomorphisms, samely B^{G_n−an}.
 One has

$$B^{G_n-an} \simeq \mathcal{C}^{an}(G_n, B)^{G_n}, \ v \mapsto (f_v : g \mapsto g \cdot v).$$
$$\simeq (B \hat{\otimes}_{\mathbf{Q}_p} \mathcal{C}^{an}(G_n, \mathbf{Q}_p))^{G_n}$$
$$B^{G-la} = \bigcup_n B^{G_n-an}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

More on analytic functions

► Fact: the left and right translation actions of G_{n+1} on C^{an}(G_n, Q_p) are trivial mod p.

Fact: there exists finite dimensional Q_p-subspaces V_k, k ∈ N of C^{an}(G_n, Q_p)° stable under left and right translations such that V_kV_l ⊂ V_{k+l} and ∪_kV_k is a dense subspace.

Proposition

There exists a unique action

$$\phi_{G_0}: Lie(\Gamma) \rightarrow End_{B_{\infty}}(B_{\infty} \hat{\otimes}_{\boldsymbol{Q}_p} \mathcal{C}^{an}(G_0, \boldsymbol{Q}_p))$$

extending the natural one on $(B_{\infty} \hat{\otimes}_{\mathbf{Q}_{p}} \mathcal{C}^{an}(G_{0}, \mathbf{Q}_{p}))^{G_{0}-inv, \ \Gamma-la}$. Moreover,

- 1. ϕ_{G_0} commutes with Γ ;
- 2. ϕ_{G_0} commutes with the right translation action of G_0 on $B_{\infty} \hat{\otimes}_{\mathbf{Q}_p} \mathcal{C}^{an}(G_0, \mathbf{Q}_p);$
- 3. ϕ_{G_0} is a derivation: $\forall \theta \in \text{Im } \phi_{G_0}$, $\theta(f_1f_2) = \theta(f_1)f_2 + f_1\theta(f_2)$.

Proof of proposition

- ▶ Fix $c < \frac{1}{2}$ inside $|C^{\times}|$. The G_0 -stable lattices $V_k^{\circ} \subset V_k$ are such that and G_1 acts trivially mod p on V_k° , for all $k \in \mathbb{N}$.
- By Tate-Sen-Colmez,
 - *B*[°]_∞ ⊗[°]_{Z_p}C^{an}(G₀, **Q**_p)[°] ≃ *B*[°]_∞ ⊗[°]<sub>B⁺_{G₁,n}D⁺_{G₁,n}, compatible with *n*;
 *D*_{G₁,n} is Γ-locally analytic.
 </sub>
- ► Galois descent: $D_{G_1,n} \simeq B_{G_1,n} \otimes_{B_{G_0,n}} D_{G_0,n}$.

Lie(Γ) acts linearly on

$$\begin{array}{l} (\cup_{n' \ge n} B_{G_0,n'}) \otimes_{B_{G_0,n}} D_{G_0,n} = (B_{G_0,\infty} \hat{\otimes}_{B_{G_0,n}} D_{G_0,n})^{\Gamma - \mathsf{la}} \\ &= (B_{\infty} \hat{\otimes}_{B_{G_0,n}} D_{G_0,n})^{G_0 - \mathsf{inv}, \ \Gamma - \mathsf{la}} \\ &= (B_{\infty} \hat{\otimes}_{\mathbf{Q}_p} \mathcal{C}^{\mathsf{an}}(G_0, \mathbf{Q}_p))^{G_0 - \mathsf{inv}, \ \Gamma - \mathsf{la}} \end{array}$$

Existence

φ_{G0} extends uniquely the natural action of Lie(Γ) on
 (B_∞ ⊗̂Q_pC^{an}(G₀, Q_p))^{G0-inv, Γ-la} = B_∞^{G0-an, Γ-la}
 thus also the natural action on B_∞^{G-la, Γ-la}.
 Explicitly:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniqueness

- $f : \text{Spa}(A, A^+) \to \mathbf{T}^1$ be a toric chart.
- $\Omega^1_{A/C} = A \cdot \operatorname{dlog} f^* T$ is free of rank 1.
- f' be another chart, then dlog $f'^*T = a \operatorname{dlog} f^*T$.

Proposition

We have $\phi'_{G_0} = a^{-1}\phi_{G_0}$: Lie(Γ) $\mapsto B \otimes_{Q_p}$ Lie(G). So the following map is independent of toric charts

 $\phi_{G_0} \otimes dlog f^*T : Lie(\Gamma) \mapsto (B \otimes_{Q_p} Lie(G)) \otimes_A \Omega^1_{A/C}.$

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●