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Abstract

We construct for rigid-analytic varieties over a p-adic local field a natural syntomic descent spectral
sequence compatible with the Hochschild-Serre spectral sequence. We also define a motivic analytic K-theory
for smooth rigid-analytic varieties together with syntomic and étale higher Chern class maps on K-groups.
We deduce from the above compatible spectral sequences that the rigid-analytic étale regulator maps factors

through the geometric Selmer groups of Bloch-Kato if the rigid-analytic variety is proper.
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0 Introduction

In this article, we (re)consider the arithmetic syntomic cohomology for rigid-analytic varieties over p-adic local

fields, define a rigid-analytic analogue of Soulé’s étale regulators, and, in the proper case, study their images.

0.1 Main results

Let K be a p-adic local field of mixed characteristic (0, ) with ring of integers O, algebraic closure K and
absolute Galois group ¥x = Gal(K/K).

0.1.1. Motivation: algebraic setting. Recall that syntomic cohomology for proper and smooth schemes over
Ok was introduced by Fontaine and Messing [27] in their proof of the crystalline-étale comparison theorem
as a natural bridge between crystalline cohomology and étale cohomology. It was generalised later by Kato
[36] to log-syntomic cohomology for semistable schemes over Ok (allowing horizontal divisors), and further
extended by Nekovai and Niziol [46] to a syntomic cohomology theory for arbitrary varieties over K or K.
Very roughly speaking, for r € N and for schemes 2~ semistable over O, the r-th (log-)syntomic cohomology
is the filtered Frobenius eigenspace (up to certain power of p) of the absolute (log-)crystalline cohomology
associated with the eigenvalue p”; then it is rationalised and globalised to arbitrary varieties over K or K using
alteration techniques. The syntomic cohomology could be thought of as a p-adic analogue of Deligne-Beilinson

cohomology for complex manifolds X, which is defined as the cohomology of the Deligne complex
Z(r)g:0 > Z(r) » Q) - Q% — - - Q.

Indeed, since its introduction, log-syntomic cohomology has proved to be useful in the study of special values

of p-adic L-functions and in formulating p-adic Beilinson conjectures.

Let us recall Nekovar and Niziol’s result [46, Theorem A].

Theorem (Nekovai-Niziol). For any varieties over K, there is a canonical graded commutative dg Q,-algebra
RU sy (X, %) such that

(i) It is the unique extension of log-syntomic cohomology to varieties over K that satisfies h-descent.
(i) It is a Bloch-Ogus cohomology theory.
(iii) For X = Spec K, we have HS’;,H(X;“ r) = H, (YK, Qyp(7)), where Héf (9K, —) denotes the Ext-group Exti(Qp, -)
in the category of potentially semistable Galois representations of Y.

(iv) There are functorial syntomic-étale period maps

parith : Rrsyn(Xhar) - Rrét(X7Q[1(7))a Pg;ﬁm : Rrsyn(XX’}l,r) - Rrét(Xf’Q[z(r))

syn

compatible with product structures and inducing quasi-isomorphisms after taking the canonical truncation <.

(v) The Hochschild-Serre spectral sequence for étale cohomology

BSEY = H (Y, HY (X, Qp(7)) = HE (X,Q,(7))



has a syntomic analogue, the syntomic descent spectral sequence
Y, = HI (G H) (Xz.Q,(r))) = Hyl (X.Q,(r)).

vi) There is a canonical morphism of spectral sequences "E' =% E'/ compatible with the syntomic-étale period
q t ¢ 5y
map.

(vii) There are syntomic Chern class maps
syn 2i—j .
K (X) - B (X0
compatible with Chern classes via the syntomic-étale period map.

For finite-dimensional Q,-representations V' of ¥, the extension groups ng‘ (9x,V) that appear in (iii),
so-called geometric Selmer groups, were introduced by Bloch and Kato [6] as part of the local tools for the
Tamagawa Number Conjecture and the Tate-Shafarevich group of a motive. These extension groups are
crucial in many questions in modern algebraic number theory due to the fact that there is a natural injection
from Hg1 (9x,V) into H'(9x, V) which is often strict. In light of (v) and (vi), syntomic cohomology groups can
be viewd as a higher dimensional (or geometric) generalisation of these extension groups. They are used as an
approximation of p-adic étale motivic cohomology (a refinement of p-adic étale cohomology capturing classes
coming from geometry), and enter into the study of special values of p-adic L-functions, more precisely the

p-adic regulators.

0.1.2. Rigid-analytic syntomic cohomology. For rigid-analytic varieties, which are deemed to be a suitable
non-archimedean analogue of complex analytic spaces, the syntomic cohomology still serves as a useful tool
for proving p-adic comparison theorems and even beyond them. We wish to extend the above theorem (0.1.1)

to the rigid-analytic context.

Our principal object of interest has been well-defined: for smooth rigid-analytic varieties, it can be ob-
tained by n-étale hyperdescent from the (log-)syntomic cohomology for models due to Fontaine and Mess-
ing (and Kato) [17, 19]; it can be further defined for general (singular) rigid-analytic varieties by further
éh-hyperdescent [9] thanks to the nice local smoothness of the éh-topology studied by Haoyang Guo [32].
The rigid-analytic syntomic cohomology was employed firstly by Colmez and Niziol to prove a (potentially)
semistable comparison theorem for smooth and proper semistable formal schemes over Ok (allowing horizon-
tal divisors) [16], later generalised to the case of smooth proper rigid-analytic varieties [20], which has another
proof by Bosco [9] using period sheaves and the Fargues-Fontaine curve. The syntomic method is important
in the study of the Stein rigid-analytic varieties by Colmez, Dospinescu and Niziot [13] in the semistable case,
and continued by their other works [17, 19, 20] and by Bosco [8, 9].

0.1.3. Syntomic descent spectral sequence. What come next in the rigid-analytic analogue of Theorem
(0.L1) are syntomic-proétale period maps and a syntomic analogue of the Hochschild-Serre spectral sequence
(see (3.1.3), (4.2.12), (3.1.8) resp. (3.2.17), (3.2.12), (3.3.7) for details).

Theorem (Syntomic descent spectral sequence). Let X be a (quasi-separated, finite-dimensional and paracompact)
proper or smooth Stein rigid-analytic variety or smooth dagger affinoid rigid-analytic variety over K. Let r > 0.

(i) There are functorial syntomic-proétale period maps
Pg;ir:h : Rrsyn(X» T) s Rrproét(X’ Q[J (7‘))

compatible with product structures and inducing quasi-isomorphisms after the canonical truncation T=".

(ii) The Hochschild-Serre spectral sequence for proétale cohomology

BBy = Hiol (G, H o (X0, Qp (1)) = Ho o (X,Qy (1))



admits a natural map from the syntomic descent spectral sequence
irj i+
gy = HY (X 1)

compatible with the syntomic-proétale period maps.

(iii) If X is proper over K, then the syntomic descent spectral sequence is identified with
g = H (G, HY  (Xc,Qp(1))) = Hyd (X,7)
9 g K> pl‘Oét C» syn >
compatible with the natural maps Hy(9x,~) — Hl, (9, ~).

Here, all the cohomology groups are upgraded to the condensed world.

0.1.4 - Remark. The assumption on X relies essentially on our known instances of Cs-conjecture, and would
be further relaxed to partial properness if the latter was proved in general (see the remarks (3.2.13) and (3.2.6)).

0.1.5 - Remark. There is another collection of period maps, the Fontaine-Messing period maps o™ [17], defined
by globalising the Fontaine-Messing period maps on semistable models [27], which induce quasi-isomorphisms
after the canonical truncation 7=" [17, Corollary 7.3]. However, a priori, it is unclear whether the period maps
o™ fit for (i) and eventually (iii). On the contrary, the arithmetic and geometric period maps Psyn that we
define in this article have good compatibilities, but it is unclear about their truncated quasi-isomorphisms.
One of our main points is that there are natural homotopies a/fM ~ Psyn thanks to the uniqueness of geometric

period morphisms [29].

0.1.6 - Remark. The reason for the properness condition in the Theorem (0.1.3, iii) is twofold. Firstly, the
Héf (9 ,—) groups were defined only for finite-dimensional Q,-representations of ¥, and the proétale coho-
mology groups are only known to be finite-dimensional Q,-vector spaces for proper rigid-analytic varieties.
It fails for Stein varieties in general, but it may not be the most important reason that we require properness.
Second and more importantly, and probably related to the previous point, one lacks semistable comparison
theorem in the non-proper case. However, the proétale-to-de Rham comparison conjecture/theorem [20, §9]
could help reformulate SV“E;’j in terms of proétale cohomology for small varieties satisfying the Cy-conjecture
(namely those with de Rham slopes > 0 in the terminology of [20, §1.2.3)).

One possible logarithmic generalisation of this result could be allowing horizontal divisors, namely con-
sidering the Kummer proétale cohomology of proper log-smooth fs log-rigid spaces, whose foundation and
finiteness were established by Hansheng Diao, Kai-Wen Lan, Ruochuan Liu, Xinwen Zhu [23, Theorem 6.2.1].
An analogue [58] of Temkin’s altered local uniformisation could be helpful. The author hopes to return in the

future to these aspects beyond proper cases.

0.1.7. Bloch-Kato exponential. As a corollary of Theorem (0.1.3), we obtain a description of the Bloch-Kato
exponential. For this, recall that the arithmetic syntomic cohomology fits into a fibre sequence

arith

RUyu(X.7) = RTyg (X)) V=055 RT g (X)/F",

where L?ﬂéh : RTuk (X) — RI'4r(X/K) denotes the rigid-analytic arithmetic Hyodo-Kato morphism. It yields

boundary maps d on cohomology groups.

Corollary. Let i € N. The composition

arith
. K] . syn . R
Hip (X)/FT 5 HE(X,r) 5 HIN (X.Q)(r) > HY o (Xe.Qy(r))

syn

is the zero map. The syntomic descent spectral sequence then induces a map

H(iR(X)/FT - Hclont(gKvH;roét (XC’ Qﬁ (7’))) .



If X is proper over K, then it is equal to the Bloch-Kato exponential map associated with the finite-dimensional [50]
Q, -representation H[fmét(XC,Qp(r)) of Yx .

To this end, for general X € Rigy, the boundary map 0 that appears above can be considered as a higher

dimensional analogue of Bloch-Kato exponential map.

0.1.8. Syntomic regulators. Dirichlet, followed by Dedekind, defined in the 19th century a regulator map
(in fact, a logarithm map) from units in the ring integers Of of an algebraic number field E to certain finite-
dimensional real vector space; they showed then that the image forms a lattice, whose covolume, also called
regulator, together with some other invariants of E are related to special values of {-functions (Dirichlet’s class

number formula), of which the regulator serves as the transcendental part.

The term regulator has since been used to denominate certain maps relating cycle class invariants, e.g.
K -groups, Chow groups, to cohomological groups. One famous arhimedean example is the Beilinson regulator
which takes values in Deligne-Beilinson cohomology groups. Intuitively speaking, the regulator plays the role

of an abstract integration theory.

The syntomic cohomology has been considered as the p-adic analogue of Deligne-Beilinson cohomology
(see for example [Nek98]). Then, the syntomic regulator being regarded as an abstract p-adic integration, the

Bloch-Kato exponential map above compares certain p-adic integrals to the values of the p-adic étale regulator.

The map of spectral sequences in the Theorem (0.1.3, ii) allows us to study the image of p-adic (pro)étale

regulator maps via syntomic regulators. Let us be more precise in the following.

0.1.9. Image of étale regulators: algebraic setting. Let us start with the algebraic setting. Let X be an
algebraic variety over K. There are étale Chern class maps cgt : Kp(X) — HéQti(X,Qp(i)) for i € N, where
Ky(X) denotes the Grothendieck group of the commutative monoid of all isomorphism classes of vector
bundles with the monoid operation given by direct sum. It can be generalised to higher (connective) K-groups,

so we have étale higher Chern class maps
& 2i—j .
ol Kj(X) — Hy 7 (X,Q,(1))

for i, j € N. We may consider the subset of homologically trivial elements of K;(X) along cf’tj, which is defined
as ét

K,(X)o = ker(K, (X) < HZ (X.0,(i)) — HY (X£.0,(1))).

By Hochschild-Serre spectral sequence, the map cft] induces Soulé’s étale higher regulator map
; 2i—j-1 )
r K (X)o = Hoon(F, Hy' 7™ (X5, Qp(0)).

Nekovat and Niziol proved the following result on the image of regulators rle; [46, Theorem B], already know
to Scholl, which generalised their own previous results with good or semi-stable reduction to arbitrary varieties

over K.

Theorem (Scholl, Nekovai-Niziol). The regulators rf; Jactors through the subgroup

HY Gk Hyy ™ (X, Qp(1))) © Hio (G Hyy ™™ (X, Qp (1)),

This follows directly from nice properties of syntomic cohomology (e.g. projective bundle formula and
Al—homotopy invariance), their theorem on syntomic descent spectral sequence (0.1.1) and compatibility of

syntomic and étale Chern class maps with the syntomic-étale period maps.

0.1.10. Image of étale regulators: rigid-analytic setting. Similarly as in Theorem (0.1.9), our Theorem on

syntomic descent sepctral sequence (0.1.3) should have a direct consequence concerning rigid-analytic étale



regulators. The main object in play is certain K-theory in the rigid-analytic setting. We have two candidates:

the (non-connective) analytic K-theory K" a la Kerz-Saito-Tamme [37, 38] and the (non-connective) nuclear-

nuc

continuous K-theory Ko

for analytic adic spaces a la Andreychev [I] (essentially equivalent to Morrow’s
continuous K-theory); the first is built from algebraic K-theory but forcing (pro-)A*"-homotopy invariance,
while the latter is built from the category of (derived) nuclear modules “just as” the algebraic K-theory is built

from the category of perfect complexes.

We adopt the first construction for the moment, and view K*" as a presheaf on Rig, with values in
Cond™®"'(Sp). We prove that there is a rigid analogue of Theorem (0.1.9), as follows (see (4.5.11) and (4.6.15) for
details).

Theorem (Image of (pro)étale regulators). Let X be a rigid-analytic variety over K. There are rigid-analytic
(pro)étale regulators
; : 2i-j-1 .
rf KX)o > Hlypn (i Hopodl ™ (X0, Qp(1)))

proét

fori,j € N, which factor through SY“E;’Zi_j_l —HS E;’Qi_j_l = Hclom(gK,Hw_j_l(Xc,Qp(i)))- In particular, if X

proét

is proper, then the regulators rfl]“ Sactor through the geometric Selmer groups

HY (G Hy' ™™ (X0, Q) (1)) € Higo (G Hyy' /™ (X, Qyp(1))).

Here, we denote by K" the non-connective analytic K-theory functor on Rigj, which is a Nisnevich
sheaf; it takes values in the co-category of light condensed spectra. There is a natural map K(‘)laive — 1o K?* of
presheaves on Rig, where K*V*(X) is the naive Grothendieck (abelian) group (without condensed structure)
of the commutative monoid of all isomorphism classes of vector bundles on X. We denote the éh-sheafification

of K* by K*¢_ Finally, we define the K;m’éh as the objectwise j-th homotopy group of K™ je. we define

Rigy — CondAb

Ka}n,éh — ﬂpreKan,éh .
J T ’ X o (Ka“’éh(X)).

Since there are natural maps K]".m — K;n’éh, these results still hold when we restrict the Chern class maps and

regulator maps to K3,

0.2 Outline of proofs

0.2.1 (Usage of condensed mathematics). To have a better control on p-adic cohomology theories, which have
huge cohomology groups and are thus difficult to handle as plain groups, one need to take their natural, if
not canonical, topological structures into account. Our point of view will be upgrading objects and statements
to the condensed world without much loss of information. The advantage of condensed mathematics that we
take in this article is essentially the good homological algebraic properties of solid p-adic functional analysis,
especially those of nuclear modules over Q,, such as behaviours of interactions between countable limits and

solid tensor products.

We would like to express our belief that many results could have been done in the more classical language
of locally convex topological Q,-vector spaces or in other potentially adequate models of topological structures

on algebras, but we are not going to pursue this point of view.

0.2.2. Let us look at the first Theorem (0.1.3). As observed above in (0.1.5), it is easy to find a candidate,
namely the Fontaine-Messing period maps @™ to satisfy the assertion (i), however it is not clear whether they
fulfill (ii) and (iii); on the other hand, using (condensed) proétale period sheaves as in [9], one may construct
Galois equivariant geometric period maps pf;’ﬁ‘“, with the help of which the statements (ii) and (iii) are more

accessible; the uniqueness proved by Sally Gilles [29] reunites these two sets of period maps.

Now let us focus on (ii) and (iii). Following the path of proof of Nekovai and Niziol, we find that the key

is the compatibility between arithmetic and geometric Hyodo-Kato morphisms, not only after taking derived



fixed points and monodromy-trivial elements but also before it. In other words, we should have the following

Galois equivariant commutative diagram

arith

®
RTux(X) ©% B, 2% RIp(X/K) ®% BY,

(0.2.2.1) l - l:

RFHK(XC) ®; B; L) Rrinf(XC /B;R)

for X € Rigy, where the vertical maps are obvious ones and ¢, : Bj — B, is the canonical embedding given
b

by log[p’] log([[:T]). Let us discuss the Hyodo-Kato morphisms appearing in the horizontal maps. Recall

that Colmez and Niziol defined globally for rigid-analytic varieties (as well as dagger varieties) an arithmetic

Hyodo-Kato morphism in [17] using zig-zag construction, which we denote for the moment by L?{rliéh’CN, and

geom,CN

defined a geometric Hyodo-Kato morphism in [19] using Beilinson’s method, which we denote by ¢/

It is unclear to the author whether these two Hyodo-Kato morphisms are compatible via the obvious

maps; if it is the case, then our paper should have been greatly shortened on this issue; otherwise, we are at

arith
HK

diagram (0.2.2.1) commutative and Galois equivariant. Indeed, this follows essentially from our construction.

least able to construct by Galois descent a seemingly new arithmetic Hyodo-Kato morphisms (2" making the

arith . ,arith
HK = ‘HK
reduction case, however, the homotopy that we construct does not seem to be natural (due to potential higher

It is then natural to ask whether there is a homotopy ¢ N We prove this in the semistable
associativity issues), since it depends on the choice of uniformiser of a finite extension L of K. Despite this
shortcoming, the syntomic cohomology defined by this new arithmetic Hyodo-Kato morphisms is naturally

isomorphic to the usual one defined by Colmez and Niziol in [17].

Once the Galois equvariant compatibility (0.2.2.1) is established, the (ii) and (iii), namely the existence
of syntomic descent spectral sequence mapping naturally to the Hochschil-Serre spectral sequence and the

identification of terms of its Eg-page in the proper case with Selmer groups, follow as in [46].

0.2.3. Now we turn to the second Theorem (0.1.10). We have proétale first Chern class maps for p-adic proétale
cohomology, which induces by projective bundle formula Chern classes for vector bundles. Similarly, we obtain
a theory of Chern classes taking values in syntomic cohomology groups. These two different Chern classes
are compatible via the period maps pgyn, and even better, compatible with the map from the syntomic descent
spectral sequence to the Hochschild-Serre spectral sequence, from which the Theorem (0.1.10) then follows
immediately for the Grothendieck Ky-group Ké"“i"e (X) of the category of vector bundles on the rigid-analytic
variety X over K in place of the higher éh-analytic K-group K;m’éh (for j = 0) on the left hand side of the

regulator map.

Regarding the case of higher K-groups, there remains something to do on the K-theory side; for this
purpose, it is enough to construct Chern class maps for higher analytic K-groups. It suffices in turn to show

the following representability result of (étale) analytic K-theory (4.6.3), which is a direct corollary of [22, §5].

Theorem (Dahlhausen-Yaylali). We have natural equivalences in Shvét(RigSmK,Condlight(Spc))

LeaLai(Z X BGL) 5 Q%750 Le (k™) ? & Q¥1s 0Ly K™ = Q%150 K™,

Here, the first term is the étale sheafification of the Al-exactification (seen as a presheaf) of the presheaf
Z x BGL on the category of smooth rigid-analytic varieties over K, an analytic analogue of the algebraic
counterpart; the third term (resp. the second term) is the connective cover of the étale sheafification of the
non-connective analytic K-theory (resp. a variant of it) 4 la Kerz-Saito-Tamme [37, 38], which is defined as the

Bass construction applied to the connective analytic K-theory (resp. to its connected cover).

Replacing RigSmg with Rigy and the étale topology with the éh-topology, one obtains similar results

for K*, Then the machinery of universal Chern classes runs as usual to yield the desired higher Chern class



maps.

0.3 Structure of the paper

0.3.1. In the first section, we are going to collect some preliminary results from higher topos theory and
condensed mathematics, recall condensed group cohomology, which generalises Tate’s continuous group coho-
mology, and finally discuss what condensed structures we will consider on typical p-adic cohomology theories.

Readers familiar with condensed mathematics may skip this on their first reading.

0.3.2. In the second section, we "redefine" the arithmetic Hyodo-Kato morphism for rigid-analytic varieties to
be compatible with the geometric Hyodo-Kato morphisms defined in [19], which induces the same arithmetic
syntomic cohomology as defined in [17]. We will also extend the construction to overconvergent situation by

standard procedures.

0.3.3. In the third section, we will define the arithmetic syntomic-proétale period map, compare it with the
Fontaine-Messing period maps, and construct morphisms of spectral sequences under specific conditions,

namely the Cy-conjecture.

0.3.4. In the last section, we define and study étale higher Chern class maps for rigid analytic varieties. Along
the way, we provide details of the projective bundle formula and Al-homotopy invariance for syntomic and
integral p-adic (pro)étale cohomology, and produce the higher Chern class maps by standard methods. The
representability of étale analytic K-theory will finally be established before we complete the proof of the main

result on regulators.
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1 Preliminaries

1.0.1. Notation. Fix a prime number p. Let K be a complete discrete valuation field of mixed characteristic
(0,p), with ring of integral O and perfect residue field . Let K be the algebraic closure of K and C = K its
p-adic completion, which is still algebraically complete. Let 9% = Gal(K/K) be the absolute Galois groupe of
K, which is a profinite group. Let Og, = W (k) be the ring of Witt vectors over £, and F = OF[’%], which is
the maximal unramified subfield of K. Let F™ be the maximal unramified extension of ¥ and F be its p-adic

completion.

Let L be any other complete nonarchimedean field of mixed characteristic (0,p). We denote by £z, its
residue field, by F7, its maximal unramified subfield with ring of integral elements Of,. We have three log-
structures: the trivial log-structure OtLriV = (Or,05), the canonical log-structure OF = (Or,0z\{0}) defined
by its closed point, and the fat or hollow log-structure (’)%L associated to the pre-log-structure (Op,,Or\{0})
sending 0 # a € Oy to [a] € W (kr). We have reductions Oy, := O /p" for n > 1and O = Or/my ~ O,

which could be decorated to designate corresponding induced log-structures.

1.0.2. We will principally work with co-categories, though computations could be done in ordinary categories.



1.0.3. Rigid spaces. Let L be a complete nonarchimdean field of mixed characteristic. All the rigid-analytic
varieties over L that we will consider are supposed to be quasi-separated, of finite dimension, and paracompact,
i.e. admitting an admissible locally finite affinoid covering; in particular, they are admissible disjoint unions
of connected paracompact rigid-analytic varieties of countable type, i.e. having a countable admissible affinoid

covering. When we regard them as adic spaces, we may use the term rigid spaces.

Let Rig; (resp. RigSmy) denote the category of rigid spaces (resp. smooth rigid spaces) over L.

1.0.4. Cohomological indices are denoted by superscripts, while homological indices are denoted by subscripts.
They could be quite confusing when we mix homotopy theories with cohomological notation of derived cate-

gories.

11 Sheaves and derived categories

1.11. Stabilisation. Let 7" be a presentable co-category with finite limits. Let * denote its final object. Write
V. = ¥, for the co-category of its pointed objects. There is the loop space functor Q : ¥, — 7, defined as
sending X to QX = fib(x — X); it preserves limits and thus admit a left adjoint X : %, — ¥.. The functors X

and Q are equivalences if ¥ is a stable co-category.

In general, ¥ is not necessary stable. The stabilisation of ¥ is the co-category
Q Q
Sp(#) =lim(--- > ¥ > Y > %),

which is universal among stable co-categories with a functor from ¥ that sends Q to an equivalence. Its objects
can be described as a sequence X = (Xo,Xj,...) together with structural equivalences X, 5 QX,.1. There is
an adjunction of functors X® 4 Q%, called respectively the infinite suspension spectrum functor and the infinite
loop space functor, between oco-categories ¥ and Sp(%.). Concretely, we have Q*X = Xj, and X*Y is given by
(£°Y), = colim,, Q"X"™*"Y, together with evident structural morphisms.

1.1.2 - Example (Spaces and spectra). Let Spc be the co-category of spaces (or anima). It is presentable and
admits all limits. Its stablisation Sp := Sp(Spc,) is the co-category of spectra. As a right adjoint functor,
the infinite loop space functor Q* : Sp — Spc preserves limits; and Q*|s;,,, also preserves sifted colimits
[43, Proposition 1.4.3.9], in particular filtered colimtis and geometric realisations. The key to the proof of the
preservation of sifted colimts is that the formation of sifted colimits in Spc commutes with finite products.

11.3 - Lemma. Let R be an ordinary ring. Let LModg := LModug(Sp) be the stable co-category of left R -module
spectra, or simply called left R-modules.

(i) The t-structure on the stable co-category Sp induces naturally the canonical t-structure on LModg. The

Jorgetful functor LModr — Sp is conservative and t-exact. The functor ny induces an equivalence
LMod$, — Modg,

where the latter is (the nerve of) the ordinary category of (discrete) R-modules.  The subcategories
LModg >0,LModg <o € LModg are stable under all (small) products and (small) filtered colimits.

(ii) There are canonical equivalences of o -categories
27 (R) = LMody, Z*(R) > LMod}, Z(R) — LModg.

Proof The (i) is the content of [43, Proposition 7.1.1.13], and the (ii) is due to [43, Proposition 7.1.1.15, Remark
7.1.116]. ]

114. Sheaves and hypersheaves. Let C be a site and ¥ an co-category. A presheaf F' € Fun(C°P,?’) with
values in ¥ is a sheaf (resp. hypersheaf) if it satisfies descent for Cech coverings (resp. for hypercoverings).



Inside the co-category of presheaves PShv(C,”") := Fun(C°P,¥’), we define the full co-category of sheaves
(resp. hypersheaves) with values in ¥, denoted by Shv(C, %) (resp. Shv™P(C, 7).

If V admits all limits, then the inclusion Shv(C,?) ¢ PShv(C,?’) admits a left adjoint L = L, called
sheafification, with subscript 7 indicating the topology on C, and the inclusion Shv™?(C,%) c Shv(C,¥)
admits a left adjoint (=)™P called hypersheafification. They preserve finite limits. If % admits all limits and

filtered colimits, then L (resp. (—)hyp) can be described as the transfinite iteration of the operation
(1.1.4.1) F (F':Uw— lim lim F(CU,F),) V)
u

for F € PShv(C,”7), where U runs through the filtered sets of all coverings (resp. hypercoverings) of U and
C (U, F). denotes the Cech cosimplicial nerve associated to U.

If ¥ is a presentable co-category, then Shv(C,”?) =~ Shv(C,Spc) ® ¥ is a presentable co-category [44,
Remark 1.3.1.6] with tensor product being the Lurie’s tensor product of presentable co-categories (which is

colimit preserving) introduced in [43, §4.8.1].

One can produce hypersheaves by taking global sections, for example namely for any bounded below
complexes of sheaves F' on C with values in an abelian category A, the associated global section functor
RU'(—,F) : U v RI'(U,F) is a hypersheaf on C with values in Z(A) [42, Lemma 6.5.2.9].

LL5 - Example. Let C be a site. We consider the presentable co-categories PShv(C,Spe,,), PShv(C,Sp)
as well as Shv(C,Spc(,)) and Shv(C,Sp). Then the adjunction X% 4 Q% between Spc and Sp induces
adjunctions X®P™ 4 Q*P* between PShv(C,Spc) and PShv(C,Sp), and 2 4 Q™ between Shv(C,Spc) and
PShv(C,Sp). For presheaves, X<P™ and QP are given simply by composition with the functors on C°P. For

sheaves, % is given by the sheafification of Z*P™, while Q% is given by QP since it preserves sheaves.

In fact, these constructions work more generally for any co-topoi X, and there is a canonical adjunction
2* 4 Q% between the co-categories X ~ Shv(X,Spc) and Shv(X,Sp), see [44, Remark 1.3.2.2].

By the explicit description of the sheafification functor L (1.1.4.1), and the fact that Q%|s,,, commutes with

sifted colimits (1.1.2), we obtain a commutative diagram

PShv(C,Spc) €=~ PShv(C,Sp=0)

(LL5.1) lL lL

Shv(C,Spc) +E— Shv(C.Spso).

1.1.6. Canonical t-structure on sheaves of spectra. Let C be a site. Let # € Z. There is a canonical t-structure
on PShv(C,Sp) given by the pair (PShv(C,Sps¢), PShv(C,Sp<p)). Let 7h* : PShv(C,Sp) — PShv(C, Ab)
be the n-th homotopy group functor for presheaves.

There are also well-defined n-th homotopy group functor for sheaves 7, : Shv(C,Sp) — Shv(C, Ab),
which can be identified with the sheafification of z%, . The functor pi, commutes with finite limits. Then, we

have notions of n-connective objects and n-coconnective objects. They span respectively the full subcategories
Shv(C,Sp)s, and Shv(C,Sp)s, of Shv(C,Sp), which determine a canonical t-structure on Shv(C,Sp).

This t-structure is compatible with filtered colimits, that is, the full subcategory Shv(C,Sp)<o C
Shv(C,Sp) is closed under filtered colimits. Besides, the full subcategory Shv(C,Sp)so € Shv(C,Sp) is

automatically closed under all colimits, as this inclusion has a right adjoint.

The composition with the truncation functor 7>¢ : Sp — Spzo, which preserves sheaves since it is the

right adjoint to the inclusion of connective spectra Sp>o < Sp, induces an equivalences of co-categories

Shv(C,8p)s0 — Shv(C,Spso).
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The commutative diagram (1.1.5.1) is then refined to

PShv(C,Spe) €= PShv(C,Sps¢) — PShv(C,Sp)

(116.1) lL lL lL

Shv(C,Spc) 2 — Shv(C,Spso) — Shv(C,Sp).

The sheafification functor L : PShv(C,Sp) — Shv(C,Sp) is t-exact and symmetric monoidal. By t-

exactness we have isomorphisms

L‘z'gr"e — Ts,L, L‘rzr”e — T<,L, Lﬂgre ~ oL

for n € Z, as well as a commutative diagram

pre

PShv(C,Spe) &2 PShv(C,Spso) <2 PShv(C,Sp)

(L1.6.2) lL lL lL

Shv(C,Spc) 2— Shv(C,Spso) —>— Shv(C.Sp).

These also generalise to sheaves of spectra on any co-topoi [44, Proposition 1.3.2.7, Proposition 1.3.4.7,
Proposition 1.3.5.7].

Here is a sheafified generalised version of (1.1.3).

11.7 - Lemma. Lei C be a site. Let O € Shv(C,CAlg(Sp)) ~ CAlg(Shv(C,Sp)) [44, §1.3.5] be a sheaf of
connective commutative ring spectrum on C, i.e. the underlying sheaf of spectra is connective; and let Modop :=
Modo (Shv(C,Sp)) denote the symmetric monoidal co-category of O-module objects of Shv(C,Sp) [44, Definition
2107

(i) The forgetful functor Modp — Shv(C,Sp) is conservative and preserves (small) limits and colimits.

(i) The t-structure on Shv(C,Sp) induces naturally the canonical t-structure on Modp. The forgetful functor
Modp — Shv(C,Sp) is t-exact. The subcategories Modop »0,Modp <o € Modo are stable under (small)
Siltered colimits.

(iii) If the structure sheaf O is discrete, then the functor my induces an equivalence
Mod{, = Modo (Shv(C,Set)),

where the latter is (the nerve of) the ordinary category of (discrete) O -modules.
(iv) If the structure sheaf O is discrete, then there is a canonical colimit-preserving and t-exact fully faithful

embedding of co-categories
L: Q(Mod?g) — Modp,

whose image is the full subcategory of those objects of Modo whose underlying object in Shv(C,Sp) is hyper-

complete.

Proof. The (i) is from [44, Proposition 2.1.0.3 (iii)]. The (ii) follows from [44, Proposition 2.1.1.1] and (i). The (iii)
is clear by definition, cf. [44, Remark 2.1.2.1]. The (iv) is the content of [44, Corollary 2.1.2.3]1. O

1Tt is a special yet frequent case of loc. cit. Actually, in the case of the co-topos Shv(C,Spc), the condition loc. cit. (b), namely that
for any F € Shv(C,Spc), there exists an effective epimorphism F’ — F where F’ € Shv(C,Set) is a discrete sheaf, turns out to be
a consequence of the condition Joc. cit. (a) that the structure sheaf O is discrete. Indeed, for any such F, we can take, similarly in the
proof of [44, Proposition 2.1.2.5], F” € Shv(C,Spc) to be the sheafification of the discrete presheaf F'P*® := [;cc e, F(c) £c; then F” is
discrete and the canonical map F’ — F is an effective epimorphism by [42, Lemma 6.2.4.5]. We remark that the existence of such F’ — F
may fail for more general co-topoi than co-categories of sheaves.
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11.8.

Let C be a site and #" be a presentable co-category with finite limits. Taking sheaves on C commutes

with certain operations:

(1)

(i)

1.2

1.2.1.

(1)

(i)

(iv)

(vi)

For another site D, we have canonical equivalences Shv(C,Fun(D,¥")) ~ Fun(D°P,Shv(C,¥")) and
Shv(C,Shv(D,¥)) =~ Shv(D,Shv(C, 7)) =~ Shv(CxD, ¥ ) sending F : U — Fy to V = (U — Fy(V))
(thento U XV +— Fy (V).

We have Sh(C,Sp(74)) ~ Sp(Sh(C, %.)).

Condensed mathematics

Condensed mathematics. Let us recall some definitions in condensed mathematics:

Let C be an co-category that admits small limits. For any uncountable strong limit cardinal «, one defines
the co-category of k-condensed objects of C as the co-category of sheaves on the site of light condensed sets

valued in C, i.e.

Cond, (C) := Shv™P(ProFin,,C).

It is the same as the co-category of contravariant functors from «-small extremally disconnected profinite

sets to C that take finite coproducts to products, denoted by
Cond,(C) =~ Fun™(EDSZ,C).

Light condensed theory, introduced by Dustin Clausen and Peter Scholze in their lectures on Analytic
Stacks jointly held in IHES and Bonn, are of certain interest, since most objects that concern us lives in
the light setting. A profinite set is called light if it can be written as a countable inverse limit of finite

sets. One defines the co-category of light condensed objects of C as
Cond™"(C) := Shv?P (ProFinls, ).

Both Cond,(C) and Cond™"(C) are stable (resp. presentable) co-categories if C is stable (resp. pre-
sentable).

The «-condensed and light condensed theories can be related via the adjunctions L 4 Resht 4
R, where L, : Fun(ProFin'¥" C) — Fun(ProFin,,C) is the left Kan extension LX(S) :=
li_r)nSaTer}_inugm X (T), and Res"8" : Fun(ProFin,,C) — Fun(ProFin8" C) is the restriction of the
functor to the subcategory ProF in8" ¢ ProFin.,, and R, : Fun(ProFin"¢" C) — Fun(ProFin.,C)
is the right Kan extension (or "sheafification”) R X (S) := limp, rytiehes 7, X (I'). The formula shows
that Res™™ oL, ~ id, so L, is fully faithful; and Res8 oR, ~ id, so R, is also fully faithful; Moreoever,
both Res"8" and R, preserves sheaves, so restricts to an adjunction Res'8" 4 R, between Cond, (C) and

Cond'$™(C).

As opposed to the k-condensed case, colimits of light condensed objects may not be computed point-
wisely. Nevertheless, most statements about Cond,(C) can be transferred to the Cond"€™(C), sometimes
requiring extra countability control on index sets.

There is a functor const : C — Cond,(C),X +— X as the composition of the constant functor C —
Fun(ProFin,,C) with sheafification. There is an adjunction const 4 ev, where ev, : Cond<(C) — C is
the functor taking underlying objects ev,X = X (*). Similarly for the light setting.

There is a comparison functor y, : pro(C) — Cond,(C),"lim";c; X; — lim,-eI& which preserves small
limit, similarly we have y!"8" in the light setting; they are related by y'ight = Res& oy, 2. This could be
thought of as "putting discrete topology on objects of C and then profinite topology on pro-objects". For

2However, it is not true in general that we have Loy

light — 5 even when restricted to the subcategory of light pro setting and C = Ab.
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our purposes, it will be indifferent to choose between k- and light condensed settings. But since light
condensed setting tends to have its own interest, we pretend to keep these two in parallel status in our
paper. All statements will be true both in - and light condensed setting, unless otherwise mentioned.

(vii) The restriction functor to light pro-spectra ¥ : prolight(Sp*) — Cond, (Sp) is conservative by Clausen-
Scholze [22, Theorem A.12]3. Here Sp* denotes the category of bounded above spectra.

1.2.2 - Remark. We are not sure about the proof of [22, Theorem A.12] (Clausen-Scholze), due to my doubts

light

on whether their functor yPY := R o !t js really equal to the functor ¥, : pro8"(Sp*) — Cond, (Sp) (with a

superscript now) defined as "lim"; X; + lim; X;.

Their proof actually proves that y, is conservative.

As for the conservativity of ¥, we have not found a way to deduce it from that of y, because we do not

know the relation between y,l()Y and .. Nevertheless, their proof works verbatim in the light condensed setting,

by the following lemma, analogue of [22, Lemma A.15] but in the light condensed setting:
1.2.2.1 - Lemma. For a tower (My,),en of abelian groups the following are equivalent:
(i) The tower is Mittag-Leffler and lim, M, = 0.

(i) The tower is pro-zero, i.e. "lim", M, = 0 in pro(Ab).
(iii) We have lim, M, = lim), M, = 0 in Cond"¢" (Ab).

Proof. The proof of (i) = (ii) is totally the same.

The proof of (iii) = (i) is also the same, except that we have to establish the isomorphisms of abelian

groups
(%) lim,['(S,M,) = I'(S,lim,M,), lim}['(S,M,) = I'(S,lim),M,)

for the light profinite set § := N U {co}. For this, noticing that for this special profinite set S, the object
Z[S] € Cond"8"(Ab) is an (internally) projective object, so that

RI(S,M,) =~ T'(S,M,)[0].

Using the general isomorphisms R lim, RI'(—,M,) =~ RI'(—,Rlim, M,) on ProFin'e" for general countable
projective system in Cond®h(4b), we obtain

Rlim(T'(S,M,)[0]) = Rlim RT'(S,M,) =~ RT'(S,Rlim M,) = ['(S,R lim M,).

Taking cohomology groups, using again the projectivity of Z[S], one finally obtains ().

As for the proof of (ii) = (iii), we apply [22, Lemma A.15], which shows that Rlim, M, = 0 in
Cond,(Z(Ab)). But we have a restriction functor Res'™ : Cond,(Z(Ab)) — Cond™"(2(Ab)) which
preserves limits, cf. [22, Remark A.7], and which commutes with the "underline” functor M +— M; so
Rlim, M, = 0 remains true in Cond"8" (2 (Ab)). O

1.2.3. (Pre)sheaves of condensed spectra. Let « be an uncountable strong limit cardinal. According to (1.1.5),
there are adjunction X*°P™ 4 Q*P™ between PShv(C,Cond,(Spc)) and PShv(C,Cond,(Sp)), and adjunction
2% 4 Q% between Shv(C,Cond,(Spc)) and Shv(C,Cond, (Sp)).

The same proof as [43, Proposition 1.4.3.9], using results from [42, §7.2.2], shows that the functor Q% :
Cond, (Sp)>0 = Cond,(Spso) — Cond,(Spc) preserves sifted colimits’; as a right adjoint, it also preserves

3The proof loc. cit. is not correct. Please refer to (1.2.2) for one correct proof.
*The key to its proof is the fact that sifted colimits in Cond, (Spc) commute with finite products; it can be checked using «-small
extremally disconnected sets.
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limits. Hence, similarly as (1.1.6), there are commutative diagrams

PShv(C,Cond, (Spc)) €-— PShv(C,Cond,(Spsy)) — PShv(C,Cond,(Sp))

(1.2.3.1) lL lL lL

Shv(C,Cond,(Spc)) 2— Shv(C,Cond,(Sps()) — Shv(C,Cond,(Sp))

pre

PShv(C,Cond, (Spe)) €2 PShv(C,Cond,(Spso)) <= PShv(C,Cond,(Sp))

(1.2.3.2) lL lL lL

Shv(C,Cond,(Spc)) 2— Shv(C,Cond,(Sps¢)) —2— Shv(C,Cond,(Sp)).

Here is a special case of (1.1.7).

12.4 - Lemma. Let R € Cond(CAlg)>o be a connective condensed ring spectrum, and let Mod;ond"( =
Modg (Cond,(Sp)) denote the symmetric monoidal oco-category of R-module objects of Cond,(Sp).

(i) The forgetful functor Mod%’"d"( — Cond,(Sp) is conservative and preserves (small) limits and colimits.

(i) The t-structure on Cond, (Sp) induces naturally the canonical t-structure on Modjf"d"‘. The forgetful functor
Modj{ond‘K — Cond,(Sp) is t-exact. The subcategories Mod%og%"( ,Mod;o';%”( c Mod%’nd”( are stable under
(small) filtered colimits.

iii) If R is discrete, then the functor my induces an equivalence
q
Mod™**¥ = Modpg (Cond, (Set)),

where the latter is (the nerve of) the ordinary category of (discrete) condensed R-modules.
(iv) If the condensed ring spectrum R is discrete, then there is a canonical colimit-preserving and t-exact equivalences
of co-categories
dxoy = d,
t: P2(Mody ") — Mody ™.

The same holds for the light condensed setting.

Proof. This follows from applying (1.1.7) to C = ProFinc,. For (iv), it suffices to notice that the co-topos
Cond, (Spc) is hypercomplete by definition. The same works in the light condensed setting. O

1.2.5. Solid mathematics. It will be particularly useful to employ "complete” objects, under the name of solid

objects.

(i) There is a subcategory Solid € Cond.Ab consisting of solid abelian groups, which is a localisation with
left adjoint (—)™ the solidification functor. It is stable under all limits and colimtis, equipped with a
tensor product — ®" — := (- ® —)"™, compactly generated under colimits by Z[.S]" for k-small extremally
disconnected sets .S, hence compactly generated under colimits by their retracts []; Z (in particular
Z[S]", isomorphic to a product of Z, is a compact projective for any profinite set S). For any M €
CondAb and N € Solid, we have Hom, ondAb(M, N) € Solid; similarly on the derived level.

Moreoever, this preservation remains true in the light condensed setting. However, in the light condensed setting, the extremally
disconnected sets do not form a basis for the topology, so we cannot argue by checking in the same way. Nevertheless, we know that sifted
colimits in any co-topos commute with finite products [42, Remark 5.5.8.12], so in particular for the co-topos Cond™¢™ (Spc).

Alternatively, one can use the restriction Reslight (1.2.1, iv) to deduce the result in the light setting from the x-condensed setting. Namely,
for any sifted category I and any X € Fun(I,Condlight(SpZ())), there exists j(vK € Fun(/,Cond,(Spsp)) such that Reslight j(vk =X (for
example applying Ly); then we have

Q% colimy X = Q% colim; Res"™8" X, ~ Res"8" Q% colim; X, ~ Res™" colim; Q% X, =~ colim; Q% Res"8" X, = colim; Q* X,
where Res!8" passes through colim; since it is a left adjoint and passes through Q® by construction, and the middle commutation is what
we have proven in the «-condensed setting.
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(ii) For any (noncommutative) condensed ring R, we denote by Modﬁfnd C CondAb the full subcategory of
R-modules, and Mod} := Modjiaond N Solid the category of R-modules that are solid, which amount to
solid R™-modules. Similarly as Solid, the category Mod}, carries a tensor product — ®% — := (- ®g —)",
and is compactly generated under colimits by ([]; Z) ®F R.

(iif) Derived solidification analogue holds, and the derived solidification and derived solid tensor products
coincide with respective derived functors. We have Z[S]*™ =~ Z[S]"[0] by [12, Proposition 5.6].

(iv) For example, there is a canonical isomorphism ([]; Z) ®é' M S [1; M for any profinite abelian group
M [8, Lemma A.19]. In particular, we obtain ([]; Z) ®® Ok S [1; Ok and then ([];Z) RL" K S5
(I 00 [1] = (11, 0p) [ 11,

(v) When the situation is clear, for example for usual topological abelian groups M such as Z, Ok, K, C,
etc., we will not distinguish the notations M and M, unless we want to stress some results in the classical

topological setting.
1.2.6. Let C be a site. We record two consequences of [44, Corollary 2.1.2.3]:

(i) For any ordinary ring R, there is an equivalence of co-categories
2(Mod§™) = Shv™P (proe, 2(Mod))

sending M to S — RI'(S,I') on profinite sets S, which simplifies to M (S) on extremally disconnected
sets S.

(ii) For any condensed ring R, we have equivalences of co-categories
2(Shv(C,Mod™)) — Shv™P(C, 2(Mod$™)),  2(Shv(C,Mod})) — Shv™?(C, Z2(Mod¥}))

induced by sending a sheaf F' € Shv(C,Modﬁf“d) to its global section functor RT'(—, F).

1.2.7. Convention. For simplicity, we will denote by Hom(—,—) the internal Hom (bi)functor
Homgcond(Set)(——) or Homc ondAb(—,—) depending on the context, and also denote Homg(—,—-) :=
HOmMOd;ond(_,_) for any condensed ring R; similarly for the derived internal Hom. However, the internal

Hom in categories of solid modules will keep the full notation HomMOd;(—, -).

1.2.8. Topological structures on p-adic cohomology theories: a review. We may understand the p-adic
proétale cohomology of rigid-analytic varieties over K or C by comparisons with other (integral or rational)
p-adic cohomology theories such as Hyodo-Kato cohomology and de Rham cohomology. However, in order
to control maps between their cohomology groups, which are huge in general with no naive hope of finite-
dimensionality (except in the dagger qcq case), hence it would be useful to put certain topological structure on

them into consideration in order to control the maps between them.

Firstly, Colmez, Niziol et Dospinescu [13] have considered the category Ck of locally convex topological
K-vector spaces, which is a quasi-abelian category. Its left bounded derived co-category Z(Ck) admits a
t-structure whose left heart LH (Cg) are represented (up to equivalence) by a monomorphism f : £ — F,

where F sits in degree 0. The cohomology groups of an object X € Z(Ck) are given by
H"(X) = 75"12"(X) = (coimd"™' - kerd") € LH(Cx),
while there are also naive cohomology groups
H"(X) := (kerd"/coimd™ ") € Cx

endowed with the quotient topology. An object (E — F) € LH(Ck) is called classical if the natural morphism
(E— F) — F/E = H°(E — F) is an equivalence.
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More recently, Guido Bosco has used in his PhD thesis [8, 9] condensed mathematics to study rational
p-adic Hodge theory, which is related to the previous perspective by the condensification functor [15, Section 4]

C?Cg — Mod;g“d, VeV

as well as its natural extension to derived categories, where C ch C Ck denotes the full subcategory of spaces

that are Hausdorff and compactly generated, and Mod$™.

The condensification functor sends strict exact sequences of K-Fréchet spaces (resp. of spaces of com-
pact type) to exact sequences in Mod% [15, Lemma 2.18]. This applies for example to rational p-adic co-
homology theories such as (pro)étale cohomology, de Rham cohomology, Hyodo-Kato cohomology, since
RTpr06c(X,Qp (7)) can be represented by a complex of Q,-Banach spaces if X € RiquCqs [13, §3.3.2], by a
complex of Q-vector spaces of compact type if X € Rig;(’chs [15, Proposition 4.23]; similarly for the geometric

case, and for de Rham cohomology and Hyodo-Kato cohomology.

Moreover, for Fréchet spaces, the condensification functor transforms projective tensor products in Cg to

solid tensor products [8, Proposition A.68].

1.2.9. Solid p-adic functional analysis. It seems that the condensed, especially solid, mathematics has better
homological behaviors than the classical p-adic functional analysis. For this reason, we will always stick to the

condensed point of view unless arguments demand intervention of the classical one.

We gather some nice features of solid p-adic functional analysis as follows.

(i) There is a particular class of nuclear K -vector spaces. To avoid conceptual confusion with classical
nuclear K-vector spaces, we call the former solid-nuclear K -vector spaces. The classcial nuclear K-vector
spaces are somewhat orthogonal to the concept of K-Banach spaces, as their common objects are finite-

dimensional. On the contrary, any K-Banach space is solid-nuclear.

(ii) Let Mod}' ¢ Mod} denote the full subcategory of solid-nuclear K-vector spaces. It is stable under
finite limits, countable products (hence countable limits), all colimits, and the solid tensor product [8,
Theorem A .43]. It contains all K-Banach spaces, and is generated under colimits by these, which are flat
objects for the solid tensor product [8, Corollary A.61]. It contains all K-Fréchet spaces, which can be
written as filtered colimits of K-Banach spaces [8, Proposition A.64].

(iii) Let (V,)aen be a countable projective system of solid-nuclear K -vector spaces, and let W be a K-Fréchet
space; then [8, Corollary A.67 (i)]

. ]  (1: ]
{ln(Vn ®x W) = (1(21 V.) ®x W.
n n
This can be refined into the following lemma (1.2.9.1). As a corollary [8, Corollary A.67 (ii)], if (V)aen
be a countable projective system of objects in Z(Mod}) such that each V, is represented by a complex
of solid-nuclear K -vector spaces, and if W € 2(Mod%) is represented by a bounded above complex of
K -Fréchet spaces, then
Rlm(V, ®g" W) = (RlmV,) & W.

n

12.9.1 - Lemma. Let (V,)yen be a countable projective system in Mod}. Consider the full subcategory C C Mod
consisting of W such that
. n ~ (1 ]
1(1_111(V,, ®x W) = (1(1_n_1 V) g W.
n n

(i) C is closed under finite colimits.
(i) IfV, and lim V, are all flat for ®Y, then C is closed under finite limits.
(iii) If V, are all solid-nuclear objects of Mod¥, then C contains all K -Fréchet spaces.

Proof- (i) This is because ®I'( commutes with all colimits in each variable and l<ln commutes with finite colimits.
n
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(ii) By flatness, ®% preserves finite limits; and l(Ln commutes with all limits.
n

(iii) This is [8, Corollary A.67]. O

As a naive example, let us illustrate in a more elementary way what happens when we apply this lemma

to the end of the previous proof.

1.2.9.2 - Example. Here is an elementary example of the lemma (1.2.9.1). Let V; — V3 be a morphism between
two K-Banach spaces with cokernel N in Mod%. Let I be a countable set.

(i) The natural map N ®7 L(I) — []; N is injective.
(ii) The limit l(iLnJ N o7 L< J > vanishies, where J runs over all cofinite subsets of 1.

Proof. (i) We have an injection N ®F L(I) — N &Y [ L by the injectivity of L () — []; L and flatness of N
for ®z [8, Corollary A.61]. Consider the following commutative diagram

Ve[, L — el [I,L — Nef[l,L — 0

ok

mhn——-I1Ln——7ILUN ——0

where the maps 7 and iy are isomorphisms by [8, Corollary A.59] since I is countable, the first row is exact by
flatness of []; L for —® [8, Lemma A.58], the second row is exact by exactness of countable products (AB4*)

[12, Theorem 2.2]. From this, one deduces that 7 is also an isomorphism. Thus follows (i) immediately.

(ii) Consider the short exact sequence of projective systems indexed by cofinite subsets J C 1
0> N®FL(J) > Ny L{I) > Ny L(I\]J) > 0
where again we are using flatness of N. Using left exactness of limit, we obtain a left exact sequence

0 — lim(N Y L(J)) — N &f L{I) — lim(N ®F L(I1\]))
J J
whose rightmost term is identified with [; N. Then (ii) follows from (i). O

1.3 Condensed group actions

1.3.1. Condensed group algebra. Let G be a condensed group. Let p be a G-action on a condensed ring R.
We define the R-algebra R[G],, called the skew group algebra of G over R°, to be the R[G] € CondAb with
multpilication law [g] - [g'] = [gg’] and [g] - x = g(x) - [g] for g € G and x € R. We define the category of
R-modules with semilinear G-action by Modfeo[n g]p, and the derived co-category of R-modules with semilinear
G-action by 2(Mod*)¢ = @(Mod?["g]p); similarly for solid objects by replacing Mod*™ with Mod™, or
more generally for analytic rings. We may simply denote R[G] := R[G], with p understood.

1.3.2. Let G be a condensed group on a condensed ring R.

(i) The forgetful functor (Mod;ao[“g]) -9 (Mod%’“d) induced by the structural ring homomorphism R —
R[G] (ie. forgetting the G-action) is conservative and commutes with all limits and colimits. It admits
as right adjoint the orbit functor R Hom, (R[G],,~), and a left adjoint — ®g R[G],.

(i) Assume the G-action on R to be trivial. Then there is a natural trivial action functor (-)"V :

@(Mod%’“d) — @(Mod%’“d)c induced by the R-algebra homomorphism R[G] — R,[g] — 1 (ie.

5In some literature, it is denoted by R#G or R =, G, etc. hence there is no standard notation.
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putting trivial G-action on complexes), which is fully faithful and commutes with all limits and colim-
its. It admits as right adjoint the derived G-fixed points functor (=)@ : .@(Mod%’“d)c - Q(Mod%’“d ,
the which is computed by M¢ ~ R['(G,M) := RHomR[G](R,M) ~ RHomZ[G](Z,M) € @(Mod%’"d),
namely the condensed group cohomology of G with coefficients in M. On the other hand, ()" admits as
left adjoint the G -coinvariance functor — ®p[q] R.

A standard way to compute the condensed group cohomology of profinite group is to consider the con-

densed cochain complex, cf. (1.3.4.1).

1.3.3 - Lemma. For any condensed group G et M € 2(Cond Ab)C, we have
RI'(G,M) ~RHom((--- > Z|G X G] - Z[G] - Z — 0),M).

Proof. The key is the standard bar resolution Z[G**'] — Z — 0 in Modczo[‘g], and the natural equivalence
RHomy ., (Z[G**'],-) ~ RHom(Z[G"],-) killing the first component G; for the latter, we have Z[G**!] ~
Z[G)®z Z[G*] = Z[G] ®é‘ Z[G"*] where the last isomorphism follows from the flatness of Z[G] over Z. O

1.3.4 - Proposition. Let G be a profinite group. For any M € P(Solid)¢ ¢ 2(CondAb)E, the condensed group

cohomology is computed by the condensed cochain complex
(1.3.4.1) RT(G.M) =~ (M - Hom(Z[G],M) —» Hom(Z[G X G],M) — --).
Moreover, RT'(G,—) commutes with filtered colimits on 2(Solid)<.

Proof. This follows from the facts that we have a natural equivalence of functors RHom(Z[S],-) =
RHom g olid(Z[S]",~) on D(Solid) and that the functor Homg olid(Z[S]"~,) is an exact functor on Solid,
with Z[S]™ being an internally compact projective object in Solid for any profinite set .S. O

The following lemma is a special case of condensed group cohomology with solid-nuclear coefficients.

1.3.5 - Lemma. Let G be a profinite group. Let Ko C K be a p-adic local subfield. For any V. € Mody with

trivial G-action and any B € Mod™™® N Mod<™%, | there is a natural isomorphism

V ®% RI(Yx.B) — RT(9.V &% B).

We remark that this remains true in a more genral setting: we still have this isomorphism for solid-nuclear
Ve @(Mod;o), which are characterised by the property H'(V) € Modg“ for all i € Z, and for general
B e @(Mod}o[a]) [11, Proposition 13.14]°.

Proof. Since V is flat for ®%, it suffices to see that the natural morphism suffit de voir que le morphisme naturel
V @F Hom(Z[G"],B) —» Hom(Z[G"],V &% B)

is an isomorphism. According to [8, Theorem A.43 (i)], V ®} W is still solid-nuclear, so by characterisation of
nuclear objects as trace-class functors [8, Proposition A.55 (i)], we have both natural vertical isomorphisms in

the following commutative diagram

V @} Hom(Z|%;].B) ——— Hom(Z[%;].V ©} B)

1 ]

V ®" Hom(Z[%;],F) ®® B —— Hom(Z[¥2],F) ®% V &% B.

6The proof of loc. cit. actually works for § = % by the compact projectivity of Z[%x]°.
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Now, we can conclude. O

In the particular case of profinite groups ¢ : G = ZZ (often non canonically isomorphic), its condensed
group cohomology can be computed alternatively by the Koszul complex, determined naturally though not

canonically by the isomorphism ¢.

1.3.6. Let M € CondAb and fi,. .., f, € Endc ond Ab(M). Its Koszul complex is the complex

n
X
Koszu (fis.. . fo) = Tot | M &7 zix...x,1 (Z[Xi..... X, ] S Z[Xi,.... X,])
i=1

with first R sitting in degree 0 and the second sitting in degree 1, where M is regarded as a Z[Xj,...,X,]-
module via the map Z[Xj,...,X,] — Endc ondAb(M), X; — f;.

1.3.7 - Proposition. Let G be a profinite group with an isomorphism ¢ : G = Zy, and let yy,. ..y, denote the
associated canonical (topological) generators of G, transported via i from those of Z;,. For any M € 7 (Mod;p)g, the
condensed group cohomology is computed by the following Koszul complex

(13.7.0) RT(G. M) ~Koszar(y1 =1, .., ya = D).

The identification depends on i, and is compatible with changing the isomorphism 1 (which amounts to changing

generators).

Iyi]-id
Proof. We have a projective resolution Tot ®;ﬁfl 1(ZI,,[G]' [y—]> Z,[G]")| = Z, — 0in Mod;p, where the
i=

first Z,[G]" sits in the degree —1 and the second sits in the degree 0. Taking R HomMod; l (=, M), using that
R HomMod;P[G] (Zy[G]™,-) =R HomZ/)[G] (Z,[G],~) ~id on Mod;ﬁ[c], we obtain the statement. O

We have the following relation between the two identifications.

1.3.8 - Lemma. Let I' ~ Zj be a profinite group with associated generator yy,. .., Yyn, and M € Mod;/)[r]. Then
the composite identification H' Hom(Z[T*],M) ~ H' (U, M) ~ H'Koszy (y1 — 1,...,y, — 1) agrees with the map
(yf{s---»vn) : Hom(Z[['],M) — M®" restricted to cocycles, where y; is induced by Z[+] — Z[T']| sending the
point to y;. More precisely, evaluated at a point, the class of a cocycle ¢ gets identified with the class of the element
me = (£(y),.- .., ¢(va))-

Proof: Since M (S) ~ Hom(Z[S],M)(x) for any profinite set .S, we only need to prove the statement evaluated
at a point.

Denote by I'” a copy of I" for the Koszul construction, and F (read as "digamma") another copy for the

continuous cochain complex construction. We have quasi-isomorphisms of genuine complexes

KOSZZ,,[F/]-(% -L...,vn— 1) ;) Zp

7 1

Tot (KOSZZp[F’XF'”]' (’yl -1,... SYn — 1)) L) Z[F0+1]l

in MOd;[,[FJ’ inducing after R HomMOd;,,m (—, M) the quasi-isomorphisms genuine complexes

Koszyr(y1—=1,...,y, = 1) < — RI(L,M)

(13.8.) |- l:

Tot (KOSZ@ZIF](Z[F/X,:.H]M) (yy-L....vn— l)) < HomZ[F] (Z[F**], M)
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in Mod;ﬁ. We are going to show that o’ (m;) — a”/(¢) is a coboundary in the total complex

Consider the following upper right pieces

Homy - (Z[T"], M)®" W Hom, - (Z[T"], M)

Hom, . (Z[T” x F],M)ea;,_m Hom, . (Z[T” x F], M)
TN i=1
(13.8.2) ldu:ﬁ -5

Homy ) (ZIT" X F2, M) $— Homgr (ZIF*], M)

I

Hom,, 1 (Z[F*], M)
of (1.3.8.1), or equivalently

Mo ——— M

(ri=Dj
\La/::const \Lconst

MF)®" —— M(F) ¢__

d"=(yioy; V" -1 d
(1.3.8.3) ld,,:pf_ 5N
\
M(F?) $o= MF)
5
M(F?%)

if we kill the I'-action by reducing the respective first components to the unit 1 € I'. We write with a bar
f € M(T™*) of the de-I"-equivaried function of a I'-equivariant function f € Homg|r (Z[T*1], M).
Consider the identity map of M (F) fitting as the dashed arrow into the diagram (1.3.8.3). It is a direct

computation to check that
" =d"+6

on M (F), and
d'f(g)=(=f(y) +6f viyi o)™,

for f € M(F). In particular, for any cocycle ¢ € Z'M(F®) = ker§ ¢ M(F), if we view it in degree 0 (upper
right corner) of the total complex and apply the differential d = d’ + d”’, we obtain

4 = (~(constey,) )iy + (671,77 @)@ () = 8¢) = (= (me),0” (9)) € M(F)®" © M (F?),

thus proving the identification. O

1.3.9 - Remark. In fact, conversely, for any m = (my,...,m,) € M(+)®" such that (y; — hm; = (y; — Dmy,
there exists a cocycle ¢, such that ¢(y;) = m; for i = 1,...,n. One needs to prove certain explicit formula
defines really an element ¢ € M(I"). For this, using compact projective generation of Mod;/)[G], one can
reduce to the case where M is of the form M = Z,[I'|" ®7 Z[S]|" = Z,[I" x S|", in which the verification
is direct. Alternatively, admitting the identification of the lemma, one can argue that there exists an element
mo € M (*) such that m + dmo comes from a cocycle ¢, i.e. m; +y;mg —mo = ¢(y;) for i =1,...,d, but now

m; = (¢ — 8myp)(y;) where ¢ is the zeroth differential of the cochain complex M (I"*).

1.3.10. Galois cohomology. Now we study examples of condensed Galois cohomology, whose computation has

essentially been done in the classical continuous cohomology context. We record these results and interpretate
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them in the condensed language.

Let M € D(Mod%’nd). Consider C = K with its natural continuous %g-action as an object of
D(Mod%’nd)g—" concentrated in degree 0. We have a canonical morphism M — M ®§‘( C in D(Mod?nd)g—l‘,

cond

inducing the morphism D(Modj
M — RU(9g.M ®% C) = (M ®% €)%«

functorial in M. We may also replace C by other objects dans D(Mod?nd)gl.

Here is a solid variant. The advantage of working in the solid world D(Mod¥%) is that C becomes now a

flat object for ®%, whence the natural isomorphism M ®§‘(' C ~ M®% C. Then we get the natural transformation

D(Mod%) — D(Mod}), - — (- o C)%.

Here is a noncompleted version. The object K is flat already for nonsolid ®x, hence M ®II} K=~MegK

and we get the natural transformation
D(Mod$™) — D(Mod$™), - — (- ®x K)Z%.

1.3.11 - Example. Let’s review some examples of Galois cohomology. Let i € N, j € Z.

(i) Tate calculated

Ka ] = O,Z = O,
Hciont(ngC(j)) = Klog/\,/cyc’ j= 0,i=1,
0, otherwise,

from which we deduce the same formula for H m(gK,B;R

H’(%, W ®R C(j)) for W € Mod;?“d a K-Banach space, a (classical) nuclear Fréchet K-vector space,

or a K-vector space of compact type equipped with a trivial ¥k -action.

(7)). There is a generalised version calculating

(ii) By adding a variable log ¢ with action g(log¢) =log ¢ +log(x cyc(0)), one obtains the computation [?]
W, j=0,i=0,

0, otherwise,

H' 9k, W &% Cllog t](5)) = {

for W e Mod?‘Id a K-Banach space or a (classical) nuclear Fréchet K-vector space with trivial ¥ -action;

similarly, one has

W, j=0,i=0,

H'(9k W ®f Biillogt](j)) = H (9x. W ®% Bar[logt](j)) = )
0, otherwise,

for the same W € Mod%’nd.

We denote
B;dR = B[logt], Bpar := Bar[logt] = B;dR ®;§R Bgr

with g(log ) =log ¢ +1og x cyc ().

1.3.12. Discrete condensed objects. For M € Cond(Set), we denote by M°® := M (%)gis, or equivalently
MO(S) = li_r)ns s M (S;). There is a natural continuous map M (*)gisc — M (*)1op underlying the morphism
M° — M; we saly that M is discrete if it is an isomorphism. The functor (-)° : Cond(Set) — Cond(Set)

preserves all limits and colimits.

1.3.13 - Definition. Let S be a profinite set. Let M/ € Cond.Ab. We define

(1.3.13.1) Hom*™ (S, M) = Hom(S,Z) ®z M € Cond.Ab
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as the condensed group of locally constant functions from S to M. We denote Hom*™ (S, M) := Hom*™ (S, M) (x).
1.3.14 - Lemma. Let S be a profinite set and M € Cond.Ab.

(i) There is a natural map Hom*" (S, M) — Hom(S,M).

(i) We have Hom*™(S,M) = 1111)11 MSi, in particular for any extremally disconnected set T, we have
Hom™™ (S, M)(T) = li_n)li Hom(S;, M(T)); in other words, we have Hom*™ (S, M) = M°(S), or more gen-
erally, Hom*™(S,M)(T) = Hom(T,M)°(S). The map in (i) corresponds to the colimit of natural maps
Hom(S8;, M(T)) =M (S; xT) — M(S x T); in particular, it is injective.

(iii) If M is discrete, then Hom*™ (S, M) 5 Hom(S,M).

Proof. (i) The natural map is clear by remarking that M = Hom(Z, M).
(ii) For extremally disconnected sets 7', we have Hom(S,Z)(T) =Z(S x T') = ll_n)l Z(S; X T}), hence
v

Hom(S,Z) = lim Z*
- -

1

and by tensoring with M, we obtain
Hom*™ (S8, M) = lim Z5 ®z M = lim M*:.
- -
1 1

Evalued on extremally totally disconnected sets 7', this is

Hom™ (8, M)(T) = lim M*(T) = lim Hom(S;, M (T)).

1 1

We know that Hom(S,M)(T) = M (S x T), hence there are maps M(S; X ') — M (S X T), and the above

map is identified its colimit.
(iii) If M is discrete, then M (S X T) = l_ir_)ni’j M(S; xT;) = l_iri)li M(S; xT). O

1.3.15. Smooth group action. Let G be a profinite group. Let M be an object of Modczo[rg]. We say that the
G-action on M is smooth if the map M — Hom(G, M) factors through

(1.3.15.) M — Hom*™(G,M) — Hom(G,M)

where the injectivity is due to (1.3.14, ii). We denote by Mody];, the full subcategory of Modczo[‘g] consisting of
condensed abelian groups with smooth G-action and .@Sm(ModCZO['g]) = .@(Modsz“['G]). In the solid situation,
we denote Mod;’[sglJ = Mod;[G] N Mody;;, and _@Sm(Mod;[G]) = .@(Mod;’[sglj). The categories Mody]
and Mod;’[sgl] are Grothendieck abelian categories with generators Z[.S x G/H] for profinite sets § and open
subgroups H < G.

By design, ModSZH[IG] C Modczo[‘g] is stable under all colimits and solidification. Indeed, it is clear from

(1.3.15.1) and (1.3.14, ii). Deriving it, we obtain a strictly commutative diagram of functors

7™ (ModiTs,) —— Z(Mod7s,)

(1.3.15.2) l(’)“ lHL.

@sm(ModE[G]) — 9(M0d2[01)~

1.3.16 - Lemma. Let G be a profinite group. The fully faithful embedding functor Mody] ;| C Modczo[’g] has a right
adjoint, which is given by

(1.3.16.1) M M™ = M Xgom(c.u) Hom*™ (G, M).
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More concretely, for any profinite set S, the set M®~™(S) consists of m € M(S) such that its orbit orb,, € M(G XS)
comes from the subset M (G; X S) for some finite quotient G; of G.

Proof. The natural projection map ¢ : M%~>™ — M is injective by (1.3.14, ii). The right translation action
r:GXG — G,(g,8) — gg induces a G-action on Hom(G,M) and on Hom*" (G, M) compatible with
the G-action on M; indeed, for the latter, we need to check that the subobject Hom**(G,M) ¢ Hom(G,M)
is stable under this G-action, but this follows from the expression (1.3.13.1). As a result, there is a natural
induced G-action on M%™*™ making ¢ a G-equivariant map. Now let us show that the G-action on M is
smooth. For this, the coaction map M~ — Hom(G,ME~5™) lands in Hom*™ (G, M) N Hom(G,M%~™) =
Hom™™ (G, M6~*m)

Finally about the adjunction statement: for any M € Mody;;, and N, € Modczo[rg], any G-equivariant map

M — N, factors uniquely as Ny — NQG_sm C Ny by factorisation property in definition (1.3.15) and the above
injectivity. |

1.3.17 - Lemma. Let G be a profinite group. For any M € Modg’[’g], we have

ME™ ~ lim H'(H, M)
tny F(EL

where H runs over the filtered system of all open normal subgroups of G.

Proof. Let H be an open normal subgroup of G acting on M via restriction py : M — Hom(H,M). We have
Hom(G/H, M) = ker(m" — pr| : Hom(G, M) — Hom(G x H,M)) over Hom(G, M), induced from the colimt
diagram colim(m,pr, : GXH — G) S G/H with compatible maps from G (e.g. (id,eq) : G — G x H), hence

M Xpom(c.m) Hom(G/H, M) ~ ker(pg — const : M — Hom(H,M)) ~ HO(E,M).

Here, we used that

GxH

m”,pry : M =~ M Xtom(c.u) Hom(G, M) = M Xpom(c.u) Hom(G x H,M) ~ HO—m(G x {eg}’
Hom Hom e

M)

where % is the quotient topological space, and that they both factors through the subobject Hom(H, M).
We conclude by taking colimits over A (1.3.16.1). O

1.3.18. Let (—)RG—sm . .@(Modczo[[g]) - .@Sm(ModCZO[rg]) denote the right derived functor of (=)¢~*™. Then
(1.3.17) implies that
MRG=s™ ~ jim RT(H, M)
iim 24

H
for M € 9 (Mod“zo[rg]), where H runs over the filtered system of all open normal subgroups of G.

Taking right adjoints of the commutative diagram (1.3.15.2), we find that (=)¢~*™ and (=)®C~s™ restrict to

functors on corresponding solid objects.

1.3.19 - Lemma. Let G be a profinite group and M € CondAb. Let G act trivially on M and by right translation

on G. Then we have a natural isomorphism
Hom*™ (G, M) ~ Hom(G,M)% ™.

Proof. For T profinite set, the map Hom(G,M) — Hom(G,Hom(G,M)) ~ Hom(G X G, M) is induced by the
multiplication map m : GV xG?® - G(2),(g1,g2) — go g1, where GW and G@® are two copies of G. We have

for extremally disonnected

Hom®™ (G, Hom (G, M))(T) = h'_l)nHom(Gl.(l),Hom(G(Q),M)(T)) = @M(G}” x G? x T),

1 1
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SO
Hom(G, M) ™™ (T) = M(G') X T) Xy (g g xr) im MGV x G? x T)

~lim M(G® x T) '
ed
= Hom*™(G?), M)(T).

Here, for the second to last identification, we used the following commutative diagram

M(G® xg, G xT) <™ M(G? x (G xg, GV)x T)

pr{ —PrZT pry —PTZT

MGOXT) —™ s MG xGY xT)

) )

MG xT) —" 5 M(GD xG xT)

with exact columns, to get a unique map M(GP xT) XM(GOXGD xT) M(Gi(l) x GO xT)— M(Gl@ xT)

making the diagram commutative, whence it is an isomorphism. O

1.3.20. Smooth group cohomology. Let G be a profinite group. We define the smooth group cohomology
functor of G as the right derived functor RT'sn(G,—) : 2°™(Modz[g)) — Z(CondAb) of Ho_mZ[G](Z,M),
which is right adjoint to the trivial action functor; similarly in the solid situation, we define by abuse of
notation RTy, (G,-) : Qsm(Mod;[GJ) — 2(Solid).

For M € @sm(Mod;[G]) with image M’ in @sm(ModCZO['g]), there is no ambiguity, since RI'yn (G, M) has
image RI'sn(G,M’) in Z(Cond.Ab). Indeed, this is because we have a strict commutative diagram of functors

P(Cond Ab) 55 7 (Modsgrd)

l(—)“ l(—)“

7(Solid) ~5 7™ (Mody ;)

where the right solidification functor is well-defined by (1.3.15).

_\triv

1.3.21. Let G be a profinite group. Consider the sequence of morphisms Cond.Ab A Modyz| s, <= MochTgiJ’
which preserve colimits and finite limits. Taking their right adjoints, which thus preserve injective objects, we
obtain

RT(G,-) = Rl (G, (-) 0.

1.3.22 - Lemma. Let G be a profinite group. For M € @Sm(Mod;[GJ) and S profinite set, RU'syy (G, M)(S) ~
RI(G,M(S)) where the latter computes the usual profinite group cohomology of the smooth G -representation M (S).

In particular, if M has a Q-linear structure, then RUsy, (G,M)(S) is represented by (MS‘)G for whichever
Q:linear complex Mg representing M (S).

Proof. The first statement is [4], Lemma 3.4.15] (cf. [17, Remark 4.28] for a classical but more restrictive
explanation) and the last is due to vanishing of higher cohomology groups of profinite group cohomology of

smooth representations over Q, O

1.3.23 - Proposition. Let G be a profinite group. For any M € Mod;’[sg], the smooth group cohomology is computed

by the smooth cochain complex
RUgn (G, M) ~ (M — Hom*™ (G, M) - Hom** (G X G,M) — ---).

Proof- This is [41, Corollary 3.4.17]. O
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1.3.24 - Corollary. For M € Mod;’[sg], we have
HY (G, M) = H(G,M).

Proof. This is due to (1.3.23) and the factorisation M — Hom*"(G,M) — Hom(G,M) for M € CondAb
(1.3.15). O

The following lemma explains the relation between classical continuous and condensed group actions.

1.3.25 - Lemma. Let G be a profinite group and M € Z(Cond.Ab) be a discrete object.

(i) Any condensed G -action on M is smooth and is uniquely determined by the underlying G -action on M(x),
which is smooth.

(ii) Conversely, any smooth G-action on M (x) extends to a condensed G -action on M.

Proof. (i) The smoothness of the G-action on M is clear from (1.3.14, iii).

We want to reconstruct natural G (S)-actions on M (S) or equivalently
M(S) - M(GxS)

from the G-action on M (*), which can be interpretated as M(x) — M(G) = h_n}lnM(Gn); hence every
m € M (*) has open stabliser in G, so that the G-action on M (*) is smooth. We know M (S) = llr_)nl M(S;) by

discreteness. So

M(S) = M(GxS)

is identifies as
- -
i in
S;
Hl}l M(S;) — h_n}M(Gn X S;)

1 n

which agrees with
) = li_{l)l(M(*) — lim M(G,)

1

The map in the last parenthesis is the same as M (%) — M (G) by discreteness of M.
(ii) Conversely, if the action of G on M (x) is smooth, then the action is described by a morphism
M(x) — 11_[1}1 M ()6 = h_r)n M (G,). Hence we may use the formula in the proof of (i) to define its (unique)
n n

extension to an G-action on M. O

1.4 Condensed cohomology theories

As pointed out in (1.2.8), we need to put condensed structures on cohomology theories in p-adic geometry. We

start with the p-adic (pro)étale cohomology.

14.1. (Pro)étale cohomology. Let X be an analytic adic space over Spa(Qy,Z,). We define the proétale
site of X as Xproet == Xq}
v i Xgproet — Xg to the étale site, with associated morphisms of topos (v*,v.). We are interested in (pro)étale
cohomology of (complexes of) sheaves of R-modules on X, where R € {Z/p",Z,,Q,}.

rost the quasi-proétale site of the diamond associated to X, with canonical projection

(i) For any F € X, we have equivalences F S Rvo*F [51, Proposition 14.8], hence RIs(X,F) =
RT 06t (X, v* F), which verifies proétale hyperdescent.
(ii) For any étale Z,-local system L = (L/p"),en on X with completion L= lim, v*(L/p") on Xproer, We
define
RT(X,L) := Rlim RT (X, L/p").
n
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Then we have
RT & (X,L) = RlimRFpmét(X,v*(L/p”))
n

(1.4.11) I ~
= Rrproét(X’R hrrtn v (L/[7 )) — Rrproét(XsL),

where the second isomorphism follows from the fact that R lim, and RI;0¢ commute, the last isomor-
phism follows from the vanishing R’ lim, v*(L/p") = 0; indeed, by [50, Lemma 3.18], we may reduce it
to checking that for totally disconnected perfectoid spaces U over X, we have R!'lim, H*(U,Z/p") = 0
and H'(U,Z/p") = 0 for i > 0, which are clear.

(iif)
1.4.2. Two condensed structures on proétale cohomology. Let X be an analytic adic space over

Spa(Qy.Z,) with canonical projection morphism foroer : Xprost — *prost = ProFin to the proétale site of

a point.
We have two versions of condensed proétale cohomology on X:

(i) For F € 2(Shv(Xproet,Ab)), we may define the pushforward to the proétale of a point RL o (X, F) =

R foroetsF € D(Shv(¥proer, Ab)) = Z(Cond Ab) ~ Shvhyp(*proét,@(.Ab)); more precisely, we have
RT (X’]:)(S) = RF(Xproét/Xxgan) = Rrproét(X Xﬁa]:)

——proét

for any profinite set S.

(ii) We have Shv(Xproet, Ab) — Shv(Xproer,CondAb) =~ Shv(Xproet X *proct, Ab) sending F to F : U
(S — F(U x S)), which by (L18, i) is further identified with the pushforward . F along the morphism
of sites

M Xproét - Xproét X #progt -

Then, for F € Shv(Xper,Ab), we define the object RIpoe(X,F) € Z(CondAb) =
Shvhyp(*proét,ﬁ (Ab)) as the global section with condensed coefficients; more precisely, we have

Rrproét(Xaz)(S) = RF((Xproét X *proét)/Xxg’/l*]:)

for any profinite set .S.

The first is very general, while the second restricts to static sheaves (i.e. sheaves concentrated in degree 0)
due to lack of exactness of u,: the pushforward p. for sheaves is not necessarily exact, hence Ru. does not

degenerate.

Though not equivalent to each other, two points of view are related for F € Shv(Xpoe,Ab). Since
U pr,
the composite morphism of sites X0t — Xprost X *prost = *proct agrees with foros, we have RI'((Xprosr X

*proét) /X xS MxF) = ﬂpmét(z\’,}'), whence an evident natural map RIpec(X,F) — RL . (X,F), whose

——proét
obstruction of being an isomorphism lies in R*u,F for i > 0.

1.4.3. Disambiguation of two condensed structures. Let X be an analytic adic space over Spa(Q,,Z,). We
give instances of F € Shv(Xproer,Ab) such that R’u,F = 0 for i > 0, so that by (1.4.2), there is a natural

equivalence

(14.3.1) RUproet (X, F) > RL,, (X, F)
in Z(CondAb). In the following examples, we will actually prove that

(14.3.2) H[fmét(U x8,F)=0, i>0

for sufficiently "small” strictly totally disconnected perfectoid spaces U over X and all extremally disconnected
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sets §; then U X § is also a strictly totally disconnected perfectoid space [5], Lemma 7.19], i.e. being a

quasi-compact perfectoid space whose all étale covers split.

(i) Let 7 = v*F pulled back from an étale sheaf 7 on X. Then (1.4.3.2) holds as we have H;mel(U X8, F) =
H(U,F) =0 if i > 0 by splitting of étale covers of U.

(ii) Let F be a proétale Z,-local system on X. Then (1.4.3.2) holds for sufficiently "small" strictly totally
disconnected U, in the sense that F|y = ZZ is trivialised. We may assume F = Z/, := lim, v*(Z/p").
Now Hp’roet(U X 8, v*(Z/p")) vanishes if i > 0, and is, if i = 0, equal to Cont(|U><§|,Z/p") the

set of locally constant functions on the underlying topological space U x § with values in Z/p". So
(H}fmét(U X 8,Z/p"))nen forms a Mittag-Leffler system. Therefore,

Cont(|U X S|, Z,), i =0,

(1.4.3.3) Hyp ool (U % 8. Zy) = i Hy, o (U X S,V (Z/p")) = { 0 io0

where Z,, is endowed with its natural p-adic topology.

(iii) Let F be a proétale Q-local system on X. Then (1.4.3.2) holds for sufficiently "small" strictly totally
disconnected U, in the sense that Flu = % is trivialised. Recall that Q, := 2[, l] = colimy, ZI, Then

(U %x8,Qp) = colimy. H . (U XS,0Q,) since proétale cohomology on qcgs spaces commutes with

proet proet
filtered colimits (by coherence of the topoi (U X §);, e = (U X 8 aproétaeqs)- We conclude by (1.4.3.3) that
Cont(|U x §|,Q,), i=0,
(1.4.3.4) proet(U x 8,Q,) = { 0 | 51Q 0

(iv) Let F = (5X or F € {B[,B,Blog,Blog[%],BER/Film dR,BdR} be a proétale period sheaf, then (1.4.3.2)
holds for sufficiently "small” U, in the sense that U is an affinoid perfectoid space over Spa(Cl,,Ocp), by
[8, Proposition 4.7] and [?, Proposition 2.37].

In conclusion, let F € Shv( proéts ADb) be the pullback of an étale sheaf on X, be a proétale Z,- or Q,-local

system, or belong to {OX,BI,B Blog’Blog[ |.BjR /Fil", B, Bar}, then:

(v) The equivalence (1.4.3.1) holds.
(vi) We have RT" roet(U F) € 2(Solid) for suff1c1ently 'small" U, even that RFProet(U,]-') concentrated in
degree 0 is a Q[’ -Banach space if F € {Qp OX,BI, </Fil"} and is a Q,-Fréchet space if 7 € {B,BY }.
(vii) By descent and stability of solidness under all limits and colimits, we obtain RI" (X,F) € 2(Solid);
furthermore, Epmét(X, F) is represented by a complex of Q,-Banach spaces if F is a Qp-local system
or F € {Qp,B;, B}, /Fil"}, by a complex of Q,-Fréchet spaces if ' € {B,B}}, whence by a complex of

solid-nuclear Q,-vector spaces in both cases.

——proét

1.4.4. The étale cohomology of qcqs objects is discrete. Let 7 = v*F pulled back from an étale sheaf F

on X. Then by [51, Proposition 11.23, Proposition 14.9], for any profinite set .S = 1(21 S, we have Rl proec(X X
1

SV'F) = li_H}l. Rrproét(X X i, V') =~ li_I)nl. Rrproét(Xa V*F)Si = li_r>nl. Rrét(X,F)Sia hence

RT o (X, F) = RUat (X, F)disc

is classic and discrete, i.e. being the condensification of RT's(X,F) € Z(Ab) endowed with the discrete
topology. We define RI", (X,F) .= R["_ . (X,F).

proét

1.4.5 - Proposition (Hochschild-Serre spectral sequence). Let G be a profinite group and X > Xa proétale
G -torsor of analytic adic spaces over Spa(Qy,Zy). Let F € Shv(Xproer, Qp) such that F|5 is G -equivariant. Then
we have a natural equivalence

(X,F) =~R[(G,RL__. (X.,F))

proet proét

in 2(Solid).
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Proof. First, we have Epmét()(, F) = limp Epmét(fxgx',]:) by proétale descent along the ech hypercovering

of the G-torsor and G-equivariance of F|5.

There is an isomorphism

proet(X>< G*",F) = RHO_In(Z[GX”] proet(X F)).
Indeed, for #» € N and profinite sets S, there are isomorphisms
proet(X X G, F)(S) = Rlproet (X X G*" x S, F)
= RFProet(X FIG*" x S)
~ RHom(Z[G*" x §],RL_ (X, F))

——proét

~ RHom(Z[S],RHom(Z[G*"],R[ (X,}—))’

——proét

where we used Z[G*" X S| ~ Z[G*"] ®z Z[S] =~ Z][G*"] ®é Z[S] concentrated in degree 0 for the last
isomorphism, Z[.S] being flat, and the second to last follows from the definition of Z[-]".

Next, recall that RT___ (X, F) € 2(Solid) (1.4.3, vii), and that Z[S]*™ =~ Z[S]"[0] is compact projective

——proét
in Z(Solid) for any profinite set S (not only the extremally disconnected ones). But we have

R Hom(Z[G*"], M) ~ R Hom, s, (ZIG*"1%, M) ~ Hom,, g,ya) (Z[G*"]*,M) ~ Hom(Z[G*"], M)
for M € 2(Solid), whence

R Hom(Z[G™"].R (X,F)) ~ Hom(Z[G""],R (X, F)).

proet proet

Finally, it remains to identify the differentials in the condensed group cohomology and the total complex

of the Cech cosimplicial nerve. O

1.4.6. Notation. We will often remove for simplicity the underline in the notation RI" Proét(X ,JF) if the context
permits, while keeping that in RIree (X, ). Since in most cases that we will encounter they even agree with

each other, there will be no harm of it.

Next, we pass to log-crystalline cohomology, keeping in mind the intuition that étale cohomology of

(p"-torsion) sheaves ought to take discrete values on qcgs objects (1.4.4).

1.4.7. Condensed log-crystalline cohomology. Let us recall some basics on log-crystalline cohomology; for
details, cf. [4, §1].

First, let $* = (S,L£,1,7) be a quasi-coherent log pd-scheme with p € Oy is nilpotent, and (2, M) be an
integral and quasi-coherent log-scheme over St Let ((Z,Mx)/S*)es be the log-crystalline site of (2, Mz)
over §¥, whose objects are (%,T) with % is an étale scheme over 2 with pullback log-structure My, and
T = (T,My) is a pd-S¥-thickening of (% ,My,) with defining pd-ideal Zy c Or, and whose coverings are
étale ones. We may simplify the notation to (Z°/S ti)ms or even (Z/8)uis if the context permits. The site
((Z,Ms)/8" s has a structure sheaf Oy st : (%,T) = I'(T,0r), with pd-ideal sheaf Zo g1 : (%,T) —
['(T,Jr); it has also has a sheaf an (%.,T) » I'(T,(1+Zr,%)) (note that Zr € Or is a nil-ideal), and
a mononid sheaf My g4 : (%,T) — I'(I,Mr). These sheaves take values in the category of abelian groups
(resp. commutative monoids), which we regard as condensed abelian groups (resp. condensed commutative

monoids) with discrete topology. By local discreteness of sheaves, many actions on them could be promoted to

"Let M* be a complex in Z(CondAb), the corresponding condensed object M € Shvhyp(*Pmét,@(Ab)) is given by M(S) =
RI'(S,M*) € Z(Ab), which is represented by M*(S) if S is extremally disconnected. By definition of free objects Z[—], we have

RHom(Z[S],M*) ~ RHom(Z[S],1°) = I°(S) for any injective resolution /* S I%in 2 (Cond.Ab); but this is also the definition of
RI'(S,M*). Therefore R Hom(Z[S],M*) ~ M(S).
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a condensed action. Then we define the condensed log-crystalline cohomology as
Rlais((Z.M2)/8%) = RTeis (2. M) /8% cris. O 55) € 2(Cond Ab).

The cocontinuous functor ((2,M»)/8") s — Zee, (% ,T) — % induces a canonical morphism of topoi
W8 (2, Mx)/SH°8" — 2 such that

j/sﬁ cris
log * lo
(O UT) =G ). (uyf g FNU) = T(U S )esis, F).
We may shorten the notation ”J/sﬁ to u if there is no confusion.

Now we turn to the p-adic setting. Let § #=(8,L,1) be an integral and quasi-coherent p-adic formal log
pd-scheme, or samely a sequence of exact closed embeddings of integral and quasi-coherent log pd-schemes
(Sﬁ)neN such that Og, = Og,,,/p" and I, = Z,1Os,. For (Z,M%) an integral and quasi-coherent log—Su—
scheme, i.e. over S,‘f for some n € N, we define ((f,Mgg)/Sﬁ)ms as the union of fully faithful embeddings of
(((fé”,Mg)/Sﬁ)cris)neN. We again have sheaves O.fz’/sﬁ, Lo st5 GEn and Moy valued in condensed abelian
groups (resp. condensed commutative monoids) with discrete topology. We define the condensed (p-adic)

log-crystalline cohomology as
RUess((2. M) /8% = lim RTess(((2,M2)/8})eris O, 1) € Z(Cond Ab).
n>>0 Z/S

C(Z, M) [SHS - 2

Again, we have a canonical morphism of topoi ' j Tk crie

1.4.71. Condensed infinitesimal cohomology. We put natural condensed structures on the infinitesimal

cohomologies defined in [31].

Let us first consider the arithmetic case. Let Z be a rigid space over K and consider the infinitesimal
site (Z/K)inr whose objects are pairs (U,T") such that U is an open subset of Z with a closed nil-immersion
U — T of rigid spaces over K, and whose coverings are open coverings. It has a structure sheaf Oz :
(U,T) » I'(T,Or) with an ideal sheaf 77k, naturally promoted to a sheaf valued in Cx but landing
furthermore in the subcategory of K-Fréchet spaces, which we regard as in Mod%. We define the arithmetic

condensed infinitesimal cohomology as
RTint(Z/K) := RU((Z/K)ins, Ox /&) € Z(Mody).
It agrees with the éh-de Rham cohomology, which we denote by
RTar(Z/K) = RT(Zen, Q% i o1,) € 2(Mod¥R).

For qcgs Z, it is represented by a bounded complex of Q,-Fréchet spaces (resp. of Q,-Banach spaces if Z is

smooth).

Similarly in the geometric Bj;-case, for any rigid space Z over C, we have the infinitesimal site
(X/B)int = Un(X /B3, )ints equlpped with a structure sheaf Oy p+ together with an ideal sheaf Zx p: .
They are naturally made to take values in Mod% B> SO that we can define the geometric condensed infinitesimal
cohomology as

RTui(X /B, = RT((X/Blg s Ox ;) € 7 (Mod, )

and
Rrinf(X/ ) = hm erf(X/BdR m)

Most results in op. cit. can be upgraded to condensed statements.
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2 Arithmetic syntomic cohomology

It is unclear whether the original arithmetic Hyodo-Kato morphism [17, §4.2] for rigid-analytic varieties is
compatible with the geometric Hyodo-Kato morphism [19, §2]. Here, we prefer to make alternatively an ad hoc
definition of the arithmetic Hyodo-Kato morphism so that it satisfies by birth this compatibility. The key tool

is the Galois cohomology computation (1.3.11, ii).

2.0.1. Semistable formal schemes.

For p-adic admissible formal schemes over Og or O¢, we denote by (—), their rigid generic fibre in the

sense of adic spaces.

A (p-adic) formal scheme 3 over K is called strictly semistable if, locally for the Zariski topology, it admits

an étale morphism to a formal scheme of the form
SpfOK<X(),. X)) /(XL X —w@), 0<I<m

for some uniformiser @ of Ok. Let L3 be the integral closure of K in I'(3,,03,), called the splitting field of
3y If 3 is connected, then L3 is a field, and Oy is the integral closure of Ok in I'(3,,03,), and J is strictly
semistable over Op,; in general, 3 is locally connected and we regard L3 as attaching the splitting field to
each connected component. Let M* be the full subcategory of formal schemes over K that are semistable

over some finite extension L of K.

A (p-adic) formal scheme X over C is called strictly semistable if, locally for the Zariski topology, it admits

an étale morphism to a formal scheme of the form
SpfOc(Xo,. ... Xm) [(Xo... X;—w), 0<I<m

for some @ € O¢\{0}. We denote by M the full subcategory of formal schemes over K that are semistable
over C. Let ./\/lscf’b be the full subcategory of formal schemes over K that are base change from a semistable

formal scheme over L for some finite extension of K.

The arithmetic and geometric setting are compatible by the base change functors

Mz 5 RigSmy
(2.0.L1) l(—);;c l_@,,{c

M N RigSm¢

where the left vertical map is defined as®

35.= | 30,0 0c

oeHomg (L3,C)

There is a natural ¥x-action on 3550 by permuting the components o > g !0~ and meanwhile acting on the
coefficients O¢; this is compatible with the ¥x-action on Z¢. One may replace L3 by any finite extension L/K

such that 3 is semistable over L and obtain the same object.

Exceptionnally in this article, we will abbreviate strictly semistable to semistable.

2.0.2. We refer to [32, §2] for the notion of éh-topology, and to [3, 2.1] for the notion of Beilinson base.

By Temkin’s altered local uniformization [53], we see that the pair (M%,(-);) is a Beilinson base for the

8Beware that 30¢ =380k Oc is a formal model of Z¢, but is not semistable over O¢ in general, hence RI'yk (Z¢) is not isomorphic
to R cyis (3(()9(:,1/0% )Q‘g .
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site Rigy ¢, and (M?’b,(—)n) is a Beilinson base for the site Rig.,, [9, Proposition 3.10]; indeed, by [17,

Proposition 2.8] this is true for étale topology on smooth rigid spaces, but éh-locally we have smoothness [32,
Corollary 2.4.8]. Therefore, we can unfold a presheaf on the base to a hypersheaf by hyperdescent. In order to

obtain a reasonable sheaf, the presheaf should satisfy hyperdescent for sufficiently refined hypercoverings.

2.0.3 - Remark. When applying Temkin’s results in [53], one should be a little bit cautious: Temkin’s definition
of semistability is slightly more general than the usual semistability. A formal scheme over Oy is called strictly
semistable (resp. semistable) @ la Temkin if locally for the Zariski (resp. étale) topology, it admits an étale map to

the standard semistable formal scheme
Gur = Spf (O {Xo,.... X}/ (Xo--- X, —w")), 1<r<n,

over Ok, where @ is a uniformizer of K and n € N. By contrast, the usual (strict) semistability requires # = 1.

These are different notions because the above standard semistable formal scheme is not regular if n > 2.

Nevertheless, when we work locally for the n-étale topology, we can always assume n = 1 by further

localisation. Indeed, we may proceed as in the proof of [563, Lemma 2.4.1], in particular its step 2: consider

fi: Gy = 6,1, induced by
X, j=i,
X j J#i.
Temkin’s argument loc. cit. allows to show that {fp,..., f,} form an n-étale covering.

2.0.4. Dagger varieties. Roughly speaking, a dagger rigid space (or dagger variety) over a non-archimedean
field L is a rigid space over L together with overconvergent structure sheaves, namely X = (X, (’)}); cf. [30] for
basic definitions and properties. A presentation of a dagger affinoid rigid space U is a prosystem (Uj)sen with
U, affinoid rigid spaces such that U and Uj, are rational subspaces of U, that U c’ Uy c' Uy. This system is
coinitial among all rational subspaces of Uj strictly containing X. The set of such presentations is non-empty
and cofiltered. For any presentation (Up)en of a dagger affinoid U, we have F(U,(’)Z]) = li_n)lh I'(Uy, Oy,),

which is a countable filtered colimit of Banach space.

We gather some cohomological feature of dagger rigid spaces.

2.1 Arithmetic and geometric Hyodo-Kato morphisms

2.L1. Condensed Galois action on log-crystalline cohomology. Consider a log-scheme 27 over Spec (9% .

(resp. 2" over a Spec O,) which is descent to a log-smooth integral map of fine log-schemes 70 > O?VL,I

(resp. 2 — OF ). By functoriality of log-crystalline cohomology, the abstract absolute Galois group %7, acts on
—4 2o

RUi(2°/8) = §) and RTo5( 2 /A%.)). On the other hand, by base change, we have

cris

chris(%o/og) = chris(go/ogi) ®5FL OF’ chris(%/A?ris) = chris(gx/oz() ®(.9L Acris-
The ¥ -action comes actually from that on the coefficients O (resp. Aeis), which is continuous for their natural

topology, hence it is upgraded to a condensed group action.

Alternatively, we may have started by defining the % -action on log-crystalline cohomology of qeqs 2~
and 20 as above. These %, -actions come from smooth ¥ -actions respectively on discrete R s(:27°/ (’)%’n)
and Rl (2 /Affris’n) for n > 1, which is uniquely upgraded to condensed actions by (1.3.25). Taking limits
and globalising, we can pass to the p-adic setting and drop the qcgs condition. This way, we can also define
condensed Galois action for more general base pd log-schemes that O% and O (for example, A5 and f/l\l,st,

see later for the notation).

2.1.2 - Lemma. Let % be a quasi-separacted, fine and saturated log-scheme log-smooth and locally of finite type over
0100,1 of relative dimension d. Then the monodromy operator N [35, (3.6)] on RFcris(QF/Og) is nilpotent with order
bounded above by a function depending only on d.
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Proof. This is |9, Lemma 3.3], based on resolution of singulaties for log-smooth schemes and a nilpotency

result of Mokrane. m|

2.1.3 - Theorem (Beilinson, Colmez-Niziol, Bosco). Let 2 be a qcgs fine log-smooth log-scheme over OF | of Cartier
type for some finite extension L/ K. Let 2" = Z ®@0x O and 2= ®0x, (9%1.

(1) There exists a natural equivalence in D(Modzst)

&k : RTens(27°/0%) % BY = RUenis (27 A%;) ©Y | By;

cris

which is independent of the choice of the descent 2 of 2, and compatible with the 4y, -action, the Frobenius ¢
and the monodromy operators N .

(ii) There exists a natural equivalence in D(Modg))
8?}{ : chris(%o/og) ®(.9F C =~ RFCrlS(%/Oé)Qp

which is independent of the choice of the descent 2 of 2", compatible with the 9y -action and the Frobenius ¢,

and compatible with the previous equivalence via Fontaine’s map 6 : Aqis » Og.

Proof: 1t has been treated in [19, Theorem 2.22, Corollary 2.31] and [9, Theorem 3.2]. Only the condensed

st

&1 -equivariance need explanation. For this, we need to show that the natural maps in the construction of &jj;c

are ¢z -equivariant.

Let us briefly explain the construction of eﬁK. For sufficiently large n, we have factorisations of Frob™:
n Fy 0
Frob" : ¥ > &’ — &
n 0 a0
Frob” : " — ¥ — Z7.

Consider the diagram commutative of log-schemes

20— 2 —— S,

(2.13.1) leef aney o

on Frob”; ffo s Sz)’l

which we can denote by 7. These data 7 determine a lifting i; : r{D —» OF, as well as a log pd-thickening

Ap st > (951. Consider the commutative diagram

RUaig(2°/00, ) <2 RUwio (20729

l(Fmb”)* \
RUei(2°/0Y, ) RUeio(2 Ay ) —=— RUens(2]A%,) @ Ay .
After taking limits then the isogeny category, (Frob”)* becomes invertible, and p; admits a unique nat-

ural @-equivariant Op,-linear section in the isogeny category, called the Hyodo-Kato section; moreover,

(RTeis (2] A%,,) ®st fi\lmst)g;nﬂp ~ Rl eis (2] A%,) ®;ms By. Recall also that chris(ﬁpo/OgL) is N-nilpotent
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(2.1.2). Altogether we get

chns(gO/OO )Qp chns(go/rPD O)N nilp

\L \_2 e
=~ (Frob™)* Lo \

RTais(2°/0%)o, RTais(2 [ Ay, "™ & Rles( 2/ 4%,) @

cris ris St .

The morphism &5y is then defined as the Bf-linearisation of the composite from the lower left corner to the
right end.

Regarding condensed ¥ -equivariance of &}, one only needs to prove the that of each morphism above.

Since the action is nontrivial only on the cohomology of 2", we only need to verify the equivariance of 7* and
K;’_l. But they are either base change morphism along a ¢ -equivariant morphism or inverse of such, so we

are done by the second description of the condensed ¥ -action in (2.L1). ]

2.1.4. Local arithmetic Hyodo-Kato morphism. Let 3 € M} be a qcqs semistable formal scheme over O,
for some finite extension L/K. We have the following ¢ -equivariant commutative diagram

chris (3?/0?:1) —> chrls(x?/o%) ®(-91?‘ B:;
N\l/gSt

RFCI‘IS (xl /A:ns) ®:1ms B$
\l/ geom
RFCrls(xl/A:;ns) ®.c s B(-;R K

1=
erf(x /B R)
21\
RT4ui(3,/L) & Bl
R
RT4r(3,/L) ®F B

L ~dR
1
RFdR(Sn/L) ®z B;dR

where RI s (310 / O?;L) and RI'4r(3,/L) are equipped with the trivial ¢ -action.

We define the local arithmetic Hyodo-Kato morphism as the composite
G RTais(37/0%,) — (RTar(3, /L) 8F Blgp) 2t — RTar(3,/L),

where the last isomorphism is from (1.3.11, ii) since RT'qr(3;,/L) is represented by a bounded complex of
L-Banach spaces, or by abuse of notation as its Q,-linearisation

G RTais(37 /05, g, = RTar(3,/L).
By design,

2.1.5 - Remark. There is certain independence of L"lrlth on the embedding o : L — C. For this, consider

two embeddings 0,7 : L < C. There exists a y € ¥k such that ¢ = y o 7. Consider X, := 3 ®., L and
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X := 3 ®rr C. We have a commutative diagram

iaL)XT

| |

SptO¢ —— SpfO¢

hence a commutative diagram

geom

chris (3?/02‘1) £> chris(B?/OgL) R F ; chris(%gyl/oﬁ“[)) g -Rr‘inf(%a',ﬂ/BgR) ®B;'R B;dR

FL,(J'

” id@yT: ﬁTx f;@de
geom

RY s (310/021) _T> chris(?)lo/OgL) ®1.7L,O' F ; chris(%ggl/oﬁo) g Rrinf(xT,ﬂ/B;R) ®B;R B;dR'

which is ¢ -equivariant (with respect to the ¥, (;)-action on the top row and the ¥, (1)-action on the bottom

row; noticing that ¥, (1) = y%;( L))/*l, so we have y¥; (1) = 9 (1Y showing equivariance). Taking ¢ -invariants

respectively, we obtain a commutative diagram

Larith
HK, o

chris(S?/OgL) — RFdR(ST]/L)

H -
Larilh

RTes(3)/0%,) — RT4r(3,/L).

which depends only on the restriction of y on the Galois closure of the extension L/K.
2.1.6 - Lemma. The local arithmetic Hyodo-Kato morphism L;{Ii{th is natural for 3 € M%.

arith

Proof. One goes formally through the construction of ¢fjy

, eventually using (2.1.5). |

2.1.7 - Proposition. For 3 € M3 a gegs semistable formal scheme over O, and X = 3 ®0, O, there is a natural

%L-equivariant commutative diagmm

Lanth

RTes (3] /0%, ), ——— RTar(3,/L)

l .

L
RUis(X/O9) ®8 B —— RTint(¥X,/Bjp)

exhibiting the compatibility between local arithmetic and geometric Hyodo-Kato morphisms.

Proof. This follows from the construction. O

2.1.8 - Proposition. If 3 € MY be gegs and semistable of relative dimension d over Of, then RT o (3?/(921)%
is represented by a bounded complex of Fy,-Banach spaces, and lies in 91°2¢] (ModF, ).

Proof- 1t is essentially the same proof as in [9, Theorem 3.15 (ii)]. Let us sketch it. The isomorphism sﬁKg

induces by base change to B}, an ¥ -equivariant isomorphism

RTeis(37/O,) 8, Bl = RTar(3y/L) ®F Bi.

9 Alternatively, we can also use the original arithmetic Hyodo-Kato isomorphism [17, 4.2.3 (i)] for the proof.
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The right hand side is represented by a complex of F7-Banach spaces and lies in 2102 (Mod;L), while on the
left we have a splitting via B}, = F1, @ M for some F-Banach space M. Therefore chris(SP/O%L)Qp, being a
direct summand of the right hand side, is also represented by a complex of Fy-Banach spaces and belongs to
g10:24] (Mod, ). ]

anth

2.1.9 - Proposition. The local arithmetic Hyodo-Kato morphism ;" induced under L-linearisation an isomorphism

chns (31 /O )Qp ®FL L _) RFdR(ST]/L)

Proof. The isomorphism sﬁK induces an %—equivariant isomorphism
R s (3 /O ) ®L. B;dR = RFdR(SI] /L) ®L. B;dR

Since RTs(3Y/ O%L)QP is represented by a bounded complex of F-Banach spaces (2.1.8), we may take ¥ -
invariants and apply (1.3.11) to conclude. O

2.110 - Remark. For 3 € My semistable over Oy, one has the following commutative diagram

RUeis(37/0%, )q, ®F, L ——> RT4r(3,/L)

g 1

chrls(go/o )QI' ®r K — RFdR(S?]/K)

The left vertical map is induced by Lox := F;, ® K — F; ®F, L, which is the inclusion of the maximal
unramifled subextension of L/K into L; the latter admits a canonical retract being the normalised trace map
L/K TrL/LOK = |Gal(L—1/LoK)| 2geGal(L/Lox) & hence it is a direct factor, and is an isomorphism if and only if
L/K is an unramified extension.

2.111. Arithmetic Hyodo-Kato cohomology. Let R’k : Rigx — Z(,.n)(Mod¥) be the 7-éh hypersheafifi-
cation of the presheaf RFITIE 3 RF(S?/O%L )q, on M%.
3

2.112 - Proposition (Local-global compatibility). For 3 € M3, the natural morphism

RrHK(Sn) - chris (3?/09’1)
is an isomorphism in D, n)(Mody).

Proof. Let us recall the proof of [17, Proposition 4.11] (cf. [46, Proposition 3.18]). One needs to show that
chris(f}? / O‘O%) satisfies 7-éh-hyperdescent for 3 € M% (up to refinement of the hypercovering), admitting
the fact that RI'qr (3,/K) does so. For this, we may assume J3 is qcqs with splitting field X, and suppose that
3. is an affine 77-éh-hypercovering of 3, with respective splitting field L., all finite Galois over K.

Let £ € N. Let E/K be a finite Galois extension containing all Le<t4;, and let G = Gal(£/K). Consider

$8/OLy g . SS/OK

3. k10, this is a (k+1)-truncated n-éh-hypercovering of 3y =", whose (generlc fibre is Zg, with each member

Le<k+l

0 <k+1,0g
equivariant and compatible with the Galois action on Zg. Here, we denoted

having splitting field Og; moreover there is a natural G- actlon on 3 making this hypercovering G-

(2.112.1) 357= ] 3®0.0 0
o€Homg (L,E)

and let g € G act on it by permuting indices o — g~! o o and at the same time acting on the coefficients
Opg. It can be extended to an entire G-equivariant hypercovering 355/ Or.
3eo = Uegxe 3??9(?', the faces maps being evidently forgetting components of G except one being acting

. We have a bisimplicial object
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on 355/ L via 0 +— g7l o o on the index set (2.1.5)!"". Its diagonal is an affine n-éh-hypercovering of 3y by

semlstables with splitting field O refining 3.. We have compatible isomorphisms

RFCIIS((3.<k+10)0/O )Qp ®FE E _) RFdR((3.<k+1o)T]/E)

by local arithmetic Hyodo-Kato isomorphism (2.1.9) since every formal schemes here are semistable over Og.

Taking limit over the index e, since 3, , forms an n-éh-hypercovering of [[sx- 3 ®0, OF, we obtain

= lim  RCaw((37,))5/000, ®r E~ 7= lim RTw((3],.)/E)

[n]€At LhE
o~ TS RFdR((S ®OK OE)T]/E)
G
~ 7=k HRFdR(?)n/K) ®k E
G
= <k HRFCHS((B Q0 OE)I /O )QP ®Fy E,
GXO

inside which we identify the Fg-linear isomorphism

v lim Rl ((31,)00/ 00, = 7 [ [ R (3 @0, On) 10h)g,
GXO

~ <k [ | RTwis(37/00)q, @ Fr
Gxo

compatible with the residual simplicial structures.

Next, since the diagonal of a bisimplicial set calculates the total realisation, we have

<k hmchr1s((3.<k+1.<k+1) /OE)Q;, ®r K & =k lim RFcrls((3.<k+1O<k+1)0/OE)QP ®r K

Ags ApXAgs
= T_k kaRFCTIS(S?/O )Qp ®r Fr ®r K
k+1 Gxo

~ 75FRT(G,RTes(3] /0% o, ®F Fr ®F K)

— ¥ RTeis (37 /1 O%)q, ®F K

The last isomorphism follows from the observation that due to finiteness of G, the condensed group cohomol-
ogy agrees with the smooth one, and can be computed pointwise; since these groups are Q-vector spaces, this

simplifies to pointwise and termwise genuine G-fixed points. Finally, we extract from it the isomorphism

7% RTeis(37/Of)g, = 7 lim RTeis((3..)0/ Op)a,

showing the k-truncated 77-éh-hyperdescent for the hypercovering 3, , refining J3.. O

2.113. Global arithmetic Hyodo-Kato morphism. Let Z € Rig, and J. be an 5-éh hypercovering of Z.
We define the global arithmetic Hyodo-Kato morphism as

(ith lim it RTyk (Z) = lim RTeis(3%,/0%, ) — lim RT R (3e/Le) & RTr(Z/K)

or by abuse of notation as the simplicial limit of Q,-linearised Hyodo-Kato morphisms. This can be made
independent of the chosen 77-étale hypercovering by taking colimit over all possible such coverings, which form

a filtered system.

2114 - Lemma. For Z € Rigy, the K-linearised Hyodo-Kato morphism Li“{rﬁh ® id has a canonoical natural

10The intuition comes from the decomposition E®k (m+]) ~ [Igm E.xo®- - - ®xm — (x0-g1(x1) .. .gm(xm))ge(;m and the interpretation
of face maps.
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K -linear retract
77 : RT@w(Z/K) - RI'yxk(Z) ®F K.

It is an isomorphism if Z has a 11-éh-hypercovering by semistable formal schemes over Ok .

Proof. Assume first that Z has an 77-éh-hypercovering by semistable formal schemes 3. over Oy, for some
finite unramified extension L/K; we may assume 3, to be qcgs (even affine). By éh-hyperdescent, local-global

compatibility (2.1.12) and local Hyodo-Kato morphism (2.1.9)“, we have isomorphisms

ik ®id : RInk(Z) ®F K = lim RTai(3.,/Op)g, ®r K S lim R4 (3+/K) & RTr(Z/K).

arith
HK

for degrees ® < k+1, then we get a canonical k-truncated retract rZSk of Tgk(t?{rli(th ®id) : TSF Ry (Z2) @ K —

Hence there is a caonical retract 7z := (13" ® id)~!. Taking one step back, if 3. are semistable over O only
7kRT4r(Z/K). This definition does not depend on the choice of the (truncated) éh-hypercovering, hence
it is canonical; moreover, such retract is compatible with base change, i.e. for any finite Galois extension
E/K, the rigid space Zg € Rigy satisfying the same reduction condition as Z € Rigy, there is a canonical

Gal(E/K)-equivariant commutative diagram

RTuk(Z) ®F K <—2%— RT4(Z/K)

| l

RTuk (Zg) ®F E < RTar(Zz/E).

There are also normalised trace maps retracting the vertical maps by étale descent along Zr — Z, giving

again a canonical Gal(E/K)-equivariant commutative diagram

RTuk(Z) ®p K <——%— RT4r(Z/K)

ﬁE/KT iE/KT

RTk(Zg) ®p, E 42— RTar(Zg/E).

arith

The constructions are natural since they are inverse to ¢jjx

®id, which is natural. Similarly we have a truncated

analogue.

More generally, let Z € Rigy be qcgs. Let o € M} be an 1-éh-hypercovering of Z by qcgs semistables
splitting over L,. Similary as at the beginning of the proof of (2.1.12), there are increasing finite extensions Ej /L
for £ € N such that Ej contains all Le<t41, so that we obtain (£ + 1)-truncated 77-éh-hypercoverings Sili)k+1 of

Zg, in M% which are compatible with base change between different £, compatible with the Gal( £y /L)-action,

and such that 3£i)k+1 has splitting field E. For m > k, we define the k-truncated retract as the composite

rsk R
Z, m TrEm/K <

rs vk RCR(Z/K) — v<*RUR (Z, [ En) = v<FRTux(Zg,) ®F,, En — 5 RTux(Z) ®F E,

which does not depend on m by the above commutative diagram, hence rZS is well-defined; it is indeed a
retract of TSk(L;‘;Ii(th ® id) by diagram chasing. Taking filtered colimts, we obtain the retract rz := li—n>1k rZSk of

L;ﬁi{th ® id. The naturality comes from that of the first special case.
Finally, the case for general Z follows formally from the qcgs case. |
2.1.15 - Proposition. If Z € Rigy be gegs, then RT'uk(Z) is represented by a complex of solid-nuclear F -vector

spaces, and lies in 219241 (Mod¥R), and the monodromy operator N is nilpotent with order bounded above by a
Sfunction depending only on d.

11Alternatively, we can also use the original arithmetic Hyodo-Kato isomorphism [17, 4.2.3 (i)] for the proof.
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Proof. By local-global compatibility (2.1.12), one reduces to the case where Z = 3, for some qcqs 3 € M%.
Then the solid-nuclear representability and the nilpotency are clear respectively by (2.1.8) and (2.1.2). The
concentration statement is clear since it is true for RI'yr (Z/K), which retracts to RI'gr (Z) ®r K by (2.114). O

2.1.16 - Remark. Bootstrapping boundedness into the proof of solid-nuclearity, we see that
Ty (Z) = %0 =M Ry (Z) = 7 lim RTeris(304/OF, g,
2d+1 *

for any n-éh-hypercovering 3o of Z in M¥. Therefore RI'yk(Z) can be represented by the truncation of a

bounded complex of Fy-Banach spaces.
2.117. Geometric Hyodo-Kato cohomology. We have a completed version as well as a decompeted version

of geometric Hyodo-Kato cohomology.

(i) Let the (completed) geometric Hyodo-Kato cohomology RI'gk : Rig, — .@(%N)(Mod;) be the 7-éh-
hypersheafification of the presheaf X — chris(ae?/o%)gﬁ on Msg’b.
(ii) Let the decompleted geometric Hyodo-Kato cohomology RT'k p : Rigy — Py n)(Modpu) be the n-

éh-hypersheafification of the RFE;IE oo X — colimg chris(S? / O%L)Qﬁ on Mscs’b, where X is the filtered

system whose date are the reduction mod p of quadruples (L,3,0,0) such that o : L — C is a finite
extension of K, 3 is a semistable formal model over Oy, and 6 : ¥ — 3 ®0, » O¢ is an isomorphism

over O¢, and whose morphisms are morphisms between the reduced objects 3? [17, 4.31].

One can globalise the geometric Hyodo-Kato morphism to obtain

G RTuk(X) ©F B — RTing(X /By)

for X € Rig; reducing mod ker 6, we obtain the Hyodo-Kato isomorphism [9, Theorem 3.15]

(2.117.1) Siee : RTuk(X) ©F € S RTR(X/C)

compatible with the arithmetic Hyodo-Kato morphism (2.1.13).

Recall that for X € Mscs’b, any map of quadruples (L, 3,0.,0) — (L’,3’,07,6’) in X induces a canonical
base change isomorphism

(21172) RT ¢35 (3?/O%L)Qp ®F .o Fr = RUeyis (SI?/O%L/ )Qp

in @(%N) (Mod;L ).

2.1.18 - Proposition (Local-global compatiblity). For X € M;;’b, the natural maps
RFHK(xn) e chns(%?/O%)Qp in @(t,o,N) (MOd;)

RUug e (X)) — RFEIrI;Fm(f) in D(on)(Modhu)

are isomorphisms.

Proof. For RT'yk, this is [9, Theorem 3.15 (i)]. For RT'yk por, this is done as in [17, Proposition 4.23 (1)] using the

original Hyodo-Kato morphism via convergent cohomology of op. cit. (4.17). |

2119 - Lemma. For Z € Rigy, there is canonically a natural %-action on RT'yx(Z¢), and a natural ﬁ
equivariant F -linear morphism
RTuk(Z) % F — RTuk (Zc).

It is an isomorphism if Z has an 11-éh-hypercovering by semistable formal schemes over O. Moreoever, any F -linear
retract v : C — F induces a natural F -linear retract rax RI'yk(Z¢) — RIyk(Z) ®; F.
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Proof. By functoriality, ¥k acts on RI'uk(Z¢). We want to make it condensed. By 17-éh-hyperdescent, we may
assume Z = 3, where J is a semistable formal scheme over O with splitting field a Galois extension L of K.
Then (Sigc),7 = U oetomg (2.0) 3 ®0,.0 Oc (2.0.11) is a semistable formal model of Z¢, the natural ¥k -action
on Z¢ extends canonically to one on 35(,5)6 by permuting the indices o — g~'o- and meanwhile acting on the

coefficients O¢. By local-global compatibilities and base change, we have
RFHK(Z) = RFcris(S?/OgL)Qp

and

[l

RFHK(ZC) = chrls((ggc)é/O%)Qp ]_[ chris((?) ®0,.0 OC)P/O%)Q[,

oeHomg (L,C)

chris (Sg/O%L)Qp ®;L,0' F
o€Homg (L,C)

1R

The natural ¢k -action on the right hand side is given by permuting components o — g o o and acting on the
coefficients F), i.e. by letting g - (x5 ® ¢5)o = (xg-l(I ® g(xg-ltr)); this is refined canonically to be a condensed
action. The natural map RI'ng(Z) — RI'gk(X) corresponds to the diagonal embedding; linearising over F,

we obtain the desired ¥k -equivariant F-linear morphism, via the %k -equivariant morphism

Fr ®FF = 1—[ Fr ®FL,0-F — 1—[ FrL®p o F,
o eHomp (F F) oeHomg (L,C)

where the last map is induced by the restriction surjection Homg (L,C) -» Hompz(Fz,F) on indices. This

becomes an isomorphism if L/K is unramified.

As for the retract, given a F-linear splitting r : C — F, we define it as the composite

geom
rZ®r

i _
THK : RFHK(ZC') 5 RFdR(Z/C) =~ RFdR(Z/K) ®I.{ C = RFHK(Z) ®; F

using the arithmetic Hyodo-Kato retract rz (2.1.14), and check that it is indeed a retract. O

2.1.20 - Corollary. For Z € Rigy, there is a natural G -equivariant commutative diagram

arith

L (=)
RTyk(Z) ®% B, % RIwR(Z/K) ®% B,

| .

L
RTuk(Zc) ®% By ——— RTwi(Zc/Blp)

exhibiting the compatibility of arithmetic and geometric Hyodo-Kato morphisms.

Write about ¢, : Bf < Bj; by sending log[p] + log g

Proof. The same proof as above applies, by reducing to semistable reduction case and using the compatibility

between L;I‘Ii(th and L%e;m (2.1.7). O

2.1.21. As a consequence of (2.1.17.2), the ¢ -action on RFEITIEFH,(%) is condensed and smooth, making

RFEIIIE,F”(%) € @(SEN) (Mod'm[%]). By descent and truncation argument combined with (2.0.1.1) as in the
proof of (2.1.14), for Z € Rigy qcgs, the ¥x-action on RI'yg por(Zc) is condensed and smooth, making
RTyg pee (Zg) € ‘@(SZIN) (Mod;m[%]); moreover, for any £ € N, there is a finite Galois extension E/K such
that 7=* Ry por (Z¢) is defined over Fg, such that there exists an (£ +1)-truncated n-éh-hypercovering 3

of Zg compatible with Gal(£/K)-action and such that 3

’
<k+l

" s+ @ll have splitting field E; consequently, we have
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isomorphisms
t=* Rluk e (Z¢) = 7=F lAi]fERFcris((Slng)?/ogE)Qp ®p F™ ~ 1<*RTyx (Zp) ®F, F™

in DN (Mod;m[%(]). The same argument applies to the complete Hyodo-Kato cohomology, and shows, with
the help of (2.119), that for Z € Rigy qcqs and for any £ € N, there exists a finite extension of £ and an

(k +1)-truncated n7-éh-hypercovering 3 of Zg compatible with Gal(£/K)-action and with splitting field E,

7
<k+l
such that there are isomorphisms

¥ RTuk (Z¢) ~ 7% ngrcris((?,;kH)lO/OgE)Qp ®f F ~1<*RI'ux(Zp) ®F, F
k+l -

in Do N (Mod;[%(]). In particular, the natural map RI'yk g (Z¢) ®;m FS RTuk(Zc) in Dy n) (Mod;[%(])
is an isomorphism.
2.1.22 - Proposition. Let Z € Rigy be gegs. We have H® (Y, Hi (Zc) ®; Blog[%]) = H} (2).

Proof: By (2.1.21), there exists a finite Galois extension E/K such that Hj, (Z¢) =~ H} (ZE) ®F, Fin Mod;[%{

hence we are reduced to showing

],

1
H® (Y, Hi (Zi) @, Buogl 1) = Hii (Z).
The computation H° (Y&, Bgr) = K and the inclusion ¢, : Blog[%] — Bgr implies
1
K o H (G, Bugl ;) = H G, Bax) = K.

hence they are all equal. On the other hand, since Hjj, (Zg) is a solid-nuclear Fg-vector space (2.1.15), and so
is Blog[%], we have by (1.3.5)

1 1
H®(Gx, Hy (Z) ®F, Biog|71) = Hii(Z) ®, H' (Jic, Biog| ;1) = i (Z).
Moreover, since Gal(£/K) is a finite group, by smooth of its action, we obtain (1.3.22)
H(Gal(E/K), Hj}y (Z)) =~ H"RT (9, RTwk (Z)) ~ Hy (Z),

where the last isomorphism follows from the étale descent along Zr — Z. O

2.2 Overconvergent variants

2.2.1. Cohomology for dagger rigid spaces. Now, we consider dagger varieties instead of rigid-analytic
varieties. There two ways to do this [17, §5], yielding strictly quasi-isomorphic theories. On the one hand,
one can consider the dagger analogue of Beilinson base (M;;’T, (=)y) and (M;;’b’T, (=)y) in order to exploit
the finiteness property of rigid cohomology or de Rham cohomology. This way, we obtain the Hyodo-Kato
cohomology a la Grosse-Klonne Rrgg as an éh-hypersheaf on 'Rig;, unfolded from the rational log-rigid
cohomology [13, 3.1.2] 3 — RIy(3?/0%) on ./\/lSI;’T and as an éh-hypersheaf on Rigz unfolded from X —
R (X]/0Y) on MP".

On the other hand, let L be K or C and let 7 be a presentable co-category of coefficients; there is a
general procedure to produce éh-hypersheaves on ’Rigz from étale hypersheaves on RigSmy: for any F €
Shv? (Rigp ¢ 7)), we define

t —1;
F'(U) = IITII)lRF(U}l,]:)
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for any presentation (U,); of a smooth affinoid U; this is well-defined and functorial, and satisfies étale
hyperdescent, thus giving F' € Shv™P(SmAffd’ . #); then we éh-hypersheafify it to get

Let>
Fi e S (Rigl . 7);

this satisfies éh-local-global compatibility for smooth affinoids cf. [17, 3.2.3] and [9, 3.24]'>. One has a natural
morphism R[(X,FT) — RF(E,}') for X € Rigz, which is moreover an isomorphism if X is partially proper
[9, Proposition 3.26]. This approach applies to for example sheaves F € {RI'uk,RI4r(—/L)}, as well as
F = F*RUin(—/BJ) if L = C, in the respective categories.

These two definitions are indeed compatible.

2.2.2 - Proposition. Let X € Rig..

(i) There is a natural isomorphism in D, y) (Mod;)
RTug(X) = RTHR(X).

(i) If X = X, for some X € Rigsg’b’T, then there is a natural isomorphism in D,y (Mod;)

RT'pk (X) = Rrrlg(%?/o%)
(iii) There is a natural Hyodo-Kato isomorphism in 2 (Mody)

£ RTyx (X) ®'% € = RTqr(X/C).

Proof. This is [9, Theorem 3.29]. Let us explain it briefly. The (i) is [19, 4.2.1 (iv), Lemma 4.17]. This together
with local-global compatibility of RFSE(X ) of loc. cit. implies (ii). For (iii), we reduce by éh-hyperdescent
and [8, Corollary A.67 (ii)] to the basic semistable reduction case, we only need need to prove the statements
for smooth dagger affinoids with presentation; but then this follows from the rigid-analytic case (2.1.17.1) and
taking filtered colimits as in the construction of F' (2.2.1). O

2.2.3 - Proposition. Let Z € Rig}.
(i) There is a natural isomorphism in P, n)(Mod¥})

RTuk(Z) = RTSS(Z).

(i) If Z = 3, for some 3 € Rig}fﬁ, then there is a natural isomorphism in D, n)(Mod},)

RTyk(Z) = Rg(37/Op).
(iii) There is a natural Hyodo-Kato morphism in 9(Mod%)

L;’{r}i{th’T : RTuk(Z) ®r K - RUar(Z/C)

with a canonical natural retract r;, which is an equivalence if Z has an n-éh-hypercovering by semistable

Jormal schemes over O

2The construction 3.18 in gp. cit. should be modified as follows: consider the fully faithful embedding ¢ : Rig; — pro(Rig;)
into the pro-system of rigid analytic analytic spaces, preserving products and étale coverings, yielding a morphism of topoi (¢*,¢) :
pro(Rigy )y — Rigz’;t; consider the functor / : Rig; — pro(Rig;) sending a rigid space to its constant system, also yielding a
morphism of topoi (I*,) : pro(Rig; )z — Rig] ,; then we have F'is the éh-hypercompletion of the étale sheaf (resp. of the étale

hypersheaf) (.[* F € Rigz’;t'
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Proof. The (i) is [19, 4.2.1 (ii), Lemma 4.14]. This together with local-global compatibility of RFS}E(Z) [17,
Proposition 5.5] implies (ii). For (iii), we reduce as above to smooth dagger affinoids with presentation Z = 3,
with 3 € M;’T; then we use (2.1.13) to construct L?ﬁéhj, and (2.1.14) to construct r;, by passing to filtered

colimits. |

2.2.4. Moreover, the identifications (2.2.2, ii) and (2.2.3, ii) are compatible with base change morphisms, as
shown in their proofs. Then the same argument as in (2.1.21), now using base change properties of rational
log-rigid cohomology instead of log-crystalline cohomology (2.1.17.2), we find that for Z € Rig;{ qcgs and

for any £ € N, there exists a finite extension of E and an (£ + 1)-truncated n-éh-hypercovering 3 of Zg

7
<k+1

compatible with Gal(£/K)-action and with splitting field E, such that there are isomorphisms
r=FRTux (Zc) = 7 lim R (311,01 /OF,) ®F, F = 15" RTux (Zp) €F, F
k+ - ) )

in Zypn) (Mod},, ).

2.2.5 - Remark. The advantage of using dagger version is that, for qcqs dagger variety X over C (resp. qcqs
dagger variety Z over K), the condensed cohomology groups HI_’IK(X) (resp. HIQK(Z), H(;R(X/C), H(;R(Z/K))
are finite-dimensional condensed vector spaces over F (resp. F, C, K) [17, Proposition 5.12, Proposition 5.6, the

first paragraph a la Grosse-Kloénne just before 5.11].

2.2.6 - Proposition. Let Z € Rig} be gcgs. We have H® (9, Hix (Zc) ®; Blog[%]) = Hj (Z) forall n € N.

Proof. The reasoning goes as (2.1.22, but there is one step which relatively much easier than (2.1.22): for any
finite Galois extension E/K, one obtains
1 1
H® (G, Hiy (ZE) oF, Blog[z]) = Hiix (ZE) ®F, Ho(ﬁ»lﬁog[;]) = Hyx (ZE)

by classicality and finiteness of Hjj, (Zg) [17, Proposition 5.6 (1)] rather than using nuclearity. O

2.2.7 - Corollary. Let Z € Rigg) be partially proper. We have H® (Y, Hi (Zc) ®; Blog[%]) = H} (Z).

Proof. In the partially proper case, writing Z as the strictly increasing union of qeqs U € Rig}-{, we have
RTyk(Z¢) ~ R @U RI'uk (Uc), hence by [9, Corollary A.67 (i)]

RTuk(Zc) ®F t ™V Big<n =R l(iLn(RFHK(UC) ®% t ™V Big<n), neN,
U
where t_NBlog’sN c t_NBlog = ¢~V B[U] denotes the subspace consisting of polynomials in U of degree < N
with coeffcients in ¢V Byog, which is a F-Fréchet space, being a finite direct sum of the F-Fréchet space B.
Now for any i € N, the system {HIQK(UC)}U is Mittag-Leffler by finite-dimensionality, hence so is the system
{H}’ﬁ((UC) ®; t_NBlog,SN}U for any i, N € N. Therefore, their R! l<i£1U vanish, so

n o~ 1 n
HHK(ZC) = I(%HHHK(UC)
HﬁlK(ZC) ®1.:~ t_NBlog,SN = I(LH(H}'ILK(U(]) ®1.:~ t_NBlog,SN)-
U
Applying the proposition (2.2.6) to each U, and recalling that H° (9k,—) commutes with limits, we obtain

H® (Y. Hig(Zc) 8 ™" Biog<n) = lim H (Y, Hyz (Uc) ®F 1™ Biog <) = lim Hiy (U) = Hiy (Z).

U U
Taking the filtered colimit for N — +co, then we are done. O
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2.3 Arithmetic syntomic cohomology

Let us start with recalling a comparison result of [19] in the geometric situation, and then descend to the

arithmetic case.

2.3.1. Geometric syntomic cohomology. For X € Rig, and r € N, one defines its (Bloch-Kato) syntomic

cohomology as

(2.3.L1) R (X, r) = [(RFHK(X) ®% B¢ =p".N=0 i‘e‘gm % RIu(X/B R)/F’] .

syn
For X € M, one has the geometric Fontaine-Messing syntomic cohomology

(2.3.19) RIEN(E.7) = [RTais (05" ™ Rlais(X)g, /7|

syn
In this case, the two syntomic cohomology complexes are actually naturally isomorphic

RUEM(%,r) ~ RTEX(%,,7)

syn syn

via the following natural commutative diagram [19, Proposition 5.3]

Rl (05" > Rleis(X)g, /F”
\L: :\LK [19, §3.3]
(2.3.1.3) (RT 45 (%) ®;ms M gp/’ N=0 0 (R (X) ®I (_;R)/FT

iﬁxT :l[lﬁ Proposition 3.27 (2)]
(geom
(ers(x?/oo Jo, ®F BY)¥ ' N=0 Ky RUine(X,/Bip) | F'.

Now we deal with the arithmetic case.

2.3.2. Arithmetci syntomic cohomology. For Z € Rigy, and r € N, one defines its arithmetic syntomic
cohomology as

anth

(2.3.2.1) RTE&(Z.7) := [RTuk (Z2) "N 55 RT4w(Z/K)/F"].

syn

For 3 € MY, one has the arithmetic Fontaine-Messing syntomic cohomology

(2322) RFSFYI\Q(SJ) = chns (S)Qp r Cil; chns(S)Qﬁ /Fr]

They are similarly defined for dagger varieties.

2.3.3 - Proposition. For 3 € Mj;, one has a natural isomorphism
FM BK
I_‘syn (3 T) 1—‘syn (377’ T).

Proof. Let L be the splitting field of 3 over Ok (or any other field L such that 3 actually has a semistable
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structural morphism to Op). Consider the following natural commutative diagram

(2.3.3.)
chris(g)gpr - chris (B)QP _— chris(B)Qp L> RFcris (S)Qy /Fr

bchl: bch bch | =
RT s (3?)‘6\0 RT 55 (S/OZ)Qp ﬂ> RT ¢ (S/OZ)Q;. /Fr

|-

PD,0\ ¢=p" .N=0
chris(S?/rL ' )<p ’

Q
7~

Rl (37 /0557 "™ —— RTwi(3{/0F,

bch|= bch | =

v

RUini(3y/L) —=—> RTwu(3,/L)/F’

where the left upper vertical arrow is an isomorphism by a standard Frobenius argument [16, Proof of Lemma
5.9], the left middle vertical arrow ¢* is an isomorphism by [36, Lemma 4.2], and the left lower vertical arrow b0
is an isomorphism because Frobenius is highly nilpotent on 7 ; the right upper vertical arrow is an isomorphism
by Beilinson’s identification [4, Theorem 1.9.2], 3 endowed with the log-structure induced by its special fibre

being smooth over OF. Every commutativity except that of the middle eye-form cavity is clear.

It remains to show that there is a natural equivalence ¢’ =~ .. Since everything here lies in Z2(Mod}) —
2(Mod])?:, by adjunction it amounts to proving the existence of natural equivalence between their post-
compositions with RT'qr(Z/L) — RTqr(Z/L) ®F B, i.e. the diagram

pdR’
(2.3.3.2)
RT 56 (B)Zzpr o RT 6 (S)QP = Rl (B)Qp
bchl: bch
R 6 (3?)& R (3 /OZ)QP

=p" ,N=0
chris (3?/7ED,0)&P

7>

Rais(30/00)5! "™ —= RTai(3)/0F,

bch|=

RTu(3,/L) — RTiui(3y/L) 8% Bl

commutes, where we put X = 3 ®0, Oc. We need to identify ¢ and ¢_ respectively with some more explicit
maps, then show the natural equivalence between them.

First, let us begin with identifying ¢'. Consider the following diagram

chris(x)gﬂ $> chris(x)Qﬁ

chris(S)gpr % chris(S)QP bch | =
(2.3.3.3) 1 L l

RTwis(3/0))q, RUini(X,/Bjy) @, Blap

bchl’l y bchT:

Rrinf(gn/l’) # Rrinf(?)n/L) ®z B;dR
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where all blocks commute, the right diamond-shaped block commutes by crystalline-theoretic base change

compatibility.

Next, we consider the diagram

Rl (0)5 » Rlais(¥)g,

bch s
enk | =

chris (3)67], (chrls(x?/O%)Qp ®1.;~ BS-D‘P:P,’N:O ﬂ) chrls(x?/O%)Q/; ®1.:~ B;;
(2.3.3.4) . gcom

c HK

RTiyg (%,7 / B;R) ®;§R B;dR

y bchT:

RTng(35/L) = > RUint(34/L) ®F By

. e geom
whose upper right block commutes by the definition of ¢, -

Next, the diagram

(2.3.3.5)
) o=p’
RFCI‘IS(%)QP
ek |~
chris (3)6:[)7 ('RFCIIS(%?/O%)Qp ®;‘~ B;)cp:ﬁ’,N:O C$ﬂ RFCI‘[S(%?/O%)Qﬁ ®1.:~ Bst

geom
‘K

Rrinf(xn/B;R) ®.;R B*

pdR
bchTZ
arith

RT35(3? /OgL)g”"Nzo FRI(3)/0Y, )q, — My RTi(3y/L) ——=% % RT(3,/L) @ Blx

commutes.

Hence, to identify ¢ and ¢_, we are left to show the commutativity of the diagram
(2.3.3.6)

RFcris (3)6;1) beh ) RFcris (x)gll
bCh\L: s;_;KT:
RFcris (3?)6:1)7 (RFcrls(x?/O%)Qp ®1-3 B:t)‘p:pr’NZO ﬂ) RFcris(f?/Og-)Qp ®;‘ B:t

PD,0y¢=p".N=0 bch bch
chris(S?/rL )&p : :

pélz
chris(S?/OgL)gpr’NZO * RF(S?/O%L)QP

particularly that of the left block.

F,
For sufficiently large n, we have factorisations of Frobenius Frob” : 3; = 3? < 3; and Frob” : 3? —
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Fy,
31— 3{). Consider the commutative diagram of log-schemes

XN X — 8

(2.3.3.7) l{-}% an 03 lFLJL 01

3? Frob” 3;) Sl(‘)’1

which we can denote by 7. These data 7 determine a lifting i, : rED -» OF,.

Consider the diagram before taking Frobenius fixed points

RTai(3)g, = > Rleris(¥)g, €5 By
bc}i - ey 8;;4;
Tlant3i)ey Rl (/1,00 ™" RT s (X0/O)o, &% B
(2.3.3.8) l § T
RT o (3?/r£D,o)Qp (Frob™)* R (S?ﬁfn,o)gp—nﬂp
il ) q

(Frob™)*

RTein(30/09,)g, <~~~ RTeis(30/0Y )g,

where ¢ is the (unique) natural ¢-equivariant Fy-linear Hyodo-Kato section; the lower right block commutes

by the definition of £};; the lower left circuit commutes (even becomes an isomorphism) after taking (—)N=0;
the upper left vertical base change morphism becomes an isomorphism after taking (—)#=*"; and i* becomes

isomorphism after taking (—)V=0 of the target.

For the commutativity of the (—)¥=" invariant of the upper left block of (2.3.3.8), we may look at the

following commutative diagram

bch
RTis(3) m RTeis(¥)q, ®F: B
bchl bchl
(233.9)  RI.(3Y) RTeis(30)
RTain(30/72%) & RE 1y (30/P0) —25 RTwis(%1/ 4000, & &

which is clear by base change maps.

Putting these altogether, we obtain the commutativity of (2.3.3.6), which is natural since it is insensitive
to the n > 0 chosen, cf. [19, Proof of Theorem 2.22, Independence of the choice of 7 and &y]. This completes

the proof that ¢ = ¢_ after — o B; 4r> Whence ¢' = ¢,_ by taking derived ¥, -fixed points. O

2.3.4 - Remark. Given a Op,-class [ € (my/pmz)\{0} associated with i} : P > 07, lifting P > (9%[1
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and assuming that »(/) = %, there is another approach providing an equivalence

along Of | —» OF D

;i RTGN(3,7) = RToN(35.7),

syn syn

a priori depending on the choice of /, which however will be of other interests. It consists of finding a ¢-
equivariant morphism ‘SHKl RUeis (3 /(90 )Q;. - chrls(xl/Acrls)Qﬁ ®; B equivalent to 8 - For the pair

(7, n) associated with the data (2.3.3.7) such that p > 1, the &

HKJ is deﬁned as the first row of the following

commutative diagram

ers(?) /OO ) —> RFCI‘IS(SI/r )N e — chrls(xl/Alst)N ilp <; chrls(xl/A:ns)Qﬁ ®.+. B:t

(Frob™ )*T (Frob")*T u;T ’

chris(S?/OgL) L> RFCFiS(S / PDO)N ilp —> chns(%l/Al st)N nilp <_ I{r‘crls(xl/A><

cris

o, ®p: By
where the third vertical arrow is induced by

v > Al g W) Vae :={ae(Oc\{0}>/<1+mc>\v(a>=§}.

All but the left square commute by base change compatibility; that of the left follows from the invertibility of
Frob® on Rl s(3)/OY , )0, and the uniqueness of ¢-equivariant section ¢o; [19, Theorem 2.12 (2)]. Thus it

st
provides the homotopy between sHK ; and &

2.3.5 - Corollary. For Z € Rigy, one has a natural isomorphism

RTN(Z,7) = RTYN(Z,7).

Proof. The equivalence produced in the proposition being natural and not involving any special choices of

elements of L, it glues to the desired global equivalence. O

2.3.6. Therefore, our new arithmetic syntomic cohomology agrees with Colmez-Niziol’s arithmetic syntomic
cohomology by [17, Proposition 4.32], although we still do not know whether the Hyodo-Kato morphism agree
with theirs.

We will denote RI'gyn(Z,7) := RT,

syn(Z r) from now on.

3 Syntomic descent spectral sequence

3.1 Syntomic-proétale period map

3.11. Fundamental exact sequence in p-adic Hodge-theory. For r € N and i > 0, we have a strict exact

sequence of topological abelian groups
0 = Qy(r) = (t7'Biog) "N — 7' B /' B = 0
For any X € Rig, the above exact sequence upgrades to an exact sequence of sheaves on X,et

0 = Qp(r) = (17 Big)* V=0 — 7B}, /1Bl —

where Bjo; = B[U] [9, Proposition 2.25, Defmltlon 2. 27] with Y -action g(U) = U + log[

action ¢(U) = pU and monodromy action N = . This can be also written as a blcartes1an square (or a

] Frobenius
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fibre square in the derived category)

Qu(r) — (1B N0

l !

TR+ —ip+
t'Bly — t'BY;.
Taking its cohomology and then i — +0co , one obtains a fibre square

R proec(X,Qp (1)) — RTproee (X, Biog) [3]97#7V=0

(3.LL1) l l

Rrproét (X, tngR) _— Rrproét (X’ B:i—R) [%] .

refining the fibre square

RTproet (X, Qp (1)) ——> RTproee( X, Biog[1])#7#N=0

l !

Rrproét(X’trBzR) _— Rrproét(X»BdR)

which we obtain by first taking i — +oco then its cohomology.

3.1.2. Compatibilities with the geometric Hyodo-Kato morphism. Assume that X = Z¢ for some Z €
Rigy. Then there are a natural isomorphism RI0e(X,2°BY;) = Fil*(RI[4r(Z/K) ®F Bar) compatible with
filtrations [9, Theorem 5.2] and a natural ¢-equivariant morphism R0 (X,B) <= RT'p(X) ~ (RI'uk (X) ®:.,
Blog)N =0 [9, Theorem 4.1]. They are compatible with the geometric Hyodo-Kato morphism [9, Theorem 5.3]

for r € N, i.e. there is a natural commutative diagram

RTprost (X, 07"BY) <—— RTR(Z/K) ®% 1B,

(3.121) T Lg;;mT

RTproee(X,B) <——— (RTpx(X) ®F Biog) V="

If moreover X is qcgs, then RIpe(X,Bar) = RIGw(Z/K) ®% Bar, and RFprOét(X,Blog[%])NZO Pl

RF(X,B[%]) Pl (RTyx(X) ®; Blog[%])Nzo; in general, by covering X with qcqs opens, we obtain natural

equivalences and morphisms

RFprOét (X, BdR) = Uli;?qs Rrproét(Ua BdR)
(3.1.2.2) ~ Uli;ng(erR(U/K) % Bar) « ( Uli[xlglsRFdR(U/K)) ®% Bax
~ RTqr(X) ®F Bar

1 N=0 : 1 N=0
Rrproét (X, Blog[;]) = Uh({gls Rrproét(U, Blog[;])

(3.1.23) < Jim (RTuc(U) 85 Bug ;DY ((lim RIuc(0) &% Bl ;)"

lim
U qcgs
1 ye
~ (RTuk (X) ®;" Blog [z])N_O

compatible with geometric Hyodo-Kato morphism.
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3.1.2.4 - Lemma. There is a natural (¢, N)-equivariant morphism
RFHK(X) ®;:~ Blog - RF(X,Blog)
inducing after taking (—)N=C the p-equivariant morphisms in (3.1.2.3).

Proof. We will go through the proofs of [9, Theorem 4.1, Theorem 4.3]. Working locally, we may assume X = X,,

where X € /\/lsc‘c.”b. For compact intervals I c (0,+0), consider the (¢, N)-equivariant isomorphisms
i
RTeris (X7 /O))q, ®F Biogr — RUeris(¥1/4%;) ®f | Biogs
(3.1.2.5) ~ (RUcris (X1/ A7) ®F_ Br) ®p Biog1
— RTprost (X, By) @, Biogs
= RTproc (X, Biog,)

where we have used [9, Proof of Theorem 4.3] for the third morphism. By taking limit over all compact
intervals I C (0,+00), taking into account the fact that chris(x?/o%)Qﬁ is represented by a bounded complex
of F-Banach spaces [9, Proof of Theorem 3.15 (ii)], we see that

chrls(x?/O%)Q[; ®1.:~ Elog - Rrproét(Xa ﬁlog)-

We conclude the construction by taking (=) P, using the N-nilpotency on chris(%?/O%)Q,, [9, Proof of
Theorem 3.15 (ii)]. Its compatibility with the given isomorphism is checked just as in [9, Proof of Theorem
4.1]. O

3.1.2.6 - Corollary. Forr € N, there is a natural commutative diagram

Rrproét(X,t_ngR) — erR(Z/K) ®].( t_ngR

(31.2.7) T Ig{KmT

Rrproét(X, Blog) < Rl (X) ®;~ Blog~

which is compatible with (3.1.2.1) after taking (—)N=°. O

3.1.3. syntomic-proétale period map. By (3.1.2), the fundamental exact sequence (3.1.1) induces natural

morphisms of fibre sequences

Rrproét (X, Blog [%])cp:p',N:O
RTpr0et (X,Qy (7)) — lcan
i RFproét(X,tTBgR) ———— RI06(X,Bgr)

(RFHK(X) ®; Blog [l])go:pT,Nzo

t
P geom
(3.13.1) Ji
Fil"(RTqr(Z/K) ®% Bgr) —— RTqr(Z/K) ®% Bar

(RTuk (X) ®% Bjj)#="N=0

«— geom
‘HK

Fil'(RTqr(Z/K) ®II{ B;R) — RTqr(Z/K) ®II{ B;R

= Ryyn(X,7)
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where the second morphism becomes an isomorphism if X is qcqs. The diagram (3.1.3.1) composes to a

geometric syntomic-proétale comparison morphism p§§3m ! RTgyn(X,7) — RIpre(X,Qp(r)) between syn-

arith

tomic cohomology and proétale cohomology, which induces an arithmetic one p§,

by taking ¥k-invariants

as follows

arith
syn

RFSYR(Z, T) _/: - _> Rrproét(Z’Qp(r))

(3.1.3.2) l l

Psyn

Rrsyn(X7 7) — Rrproét(X7Q[1(7))-

3.1.4 - Remark. By (3.1.2.7), the maps in the construction of the geometric syntomic-proétale comparison map
(3.1.3.1) are actually induced by maps of data (4,B,t,7), where 4 € D, n) (Moda);d), B e Qﬂ(Modg‘fd) =
Fun(zop,@(Modgd)), t= and r € N.

3.1.5. Fontaine-Messing period map. We would like to compare the above constructed period maps (3.1.3.2)

with another collection of period maps, the Fontaine-Messing period maps
™ RUgn (X, 1) = RTproat (X, Qy (1)),

which are defined by globalising the Fontaine-Messing period maps on semistable models @™ : Rl (X,7) —
RIe(X,Zy(7))q, = Rlproat(X,Qp (7)), both in the arithmetic and geometric cases [17, §7] (recall the definition
of the Fontaine-Messing syntomic cohomology (2.3.1.2), (2.3.2.2)). They are constructed in a natural way so
that they satisify Galois equivariance: if X = X, with X = 3 ®0, O¢ such that 3 € M% with splitting field Z,

FM, . . . . . FM, . . .
then «, oM are ¢ -equivariant; in particular, if X = Z ®x C, then «, OO s ¥k -equivariant.

Whether these seemingly two types of period maps are homotopic, i.e. pgn = a™ in the underlying
homotopy category (both in geometric and arithmetic cases), is closely related to the uniqueness of (geometric)
p-adic period morphisms addressed by Niziol [47, 48] in the algebraic setting and by Sally Gilles [29] in the
formally algebraic setting. Although the latter have treated seemingly only the case of proper semistable
models, its proofs contain a great amount of local constructions which we will employ to obtain the following
proposition.

3.1.6 - Proposition. The geometric syntomic-proétale period map pfjﬁm is naturally homotopic to the geometric

. . . FM,geom
Fontaine-Messing period map a, ° .

Proof. By éh-hyperdescent, one may reduces to the case of X = X,,, where X € M?’b is affine and descends to
J € M} with splitting field L. Essentially by construction, it suffices to proves the natural commutativity of

the following diagram

RFét(%n’Zp(T))Qp — Rrproét(%n’BI) — Rrproét(%n»BdR)

can
a/l:M,geomT canT /

Rr‘g\:{(x, r) Emm— Rl—‘cris(%l/A>< )QIJ

cris

X
cris

where we have used the canonical isomorphism RI'(X) > Rl s (X1/A%,) to identify the absolute log-
crystalline cohomology defining the Fontaine-Messing syntomic cohomology. Here, the vertical canonical
morphism can is defined in [9, Proof of Theorem 4.3] (as was used in (3.1.2.5) for the third morphism), which
actually factors as RFC,iS(xl/Aéis)Qﬁ AN RT proet (X5, Ainf) — RTproet(X;,By) where the first is induced by
Cesnavicius-Koshikawa’s ¢-equivariant comparison isomorphism [10, Theorem 5.4] and the latter is induced by
the canonical map of proétale period sheaves Ay — By. Moreover, the slanted canonical morphism can is in-
duced by the morphisms of sites (%”/B;R’m)mf — (X/ A%, )eris- The right triangle commutes by [9, Proposition
5.11], so it remains to show that the left square commutes.
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The upper left arrow being induced by maps of proétale sheaves Z,(r) — Aj,f — By, we are thus reduced

to showing the natural commutativity of the following diagram

Rrét(xn,zp(r))Qp — RFprOél(xn;Ainf)

FM.geom CK
. ® T Y T

RUPM(X,r) —S0 s BT (%1/4%,)q,.
For this, we apply the aforementioned local constructions in Gilles’s works [29]: she constructed in p. cit., §8
for such X a natural Lazard type period map a) : R, (X,r) — RTe(X,,Zy(7))q, such that 757a¥ is an
equivalence®, then she proved a natural identification ! ~ aEM’geom in op. cit., Théoréme 9.1 on the one

hand, and that on the other hand the analogue of the above commutative diagram

Rrét(:{n > Z]) ( r))Qp — Rrproét (xr] > Ainf)

09T VCKT

RFS%(%,T) # chris(xl/A>< )Qp

cris

commutes by the step (ii) in the proof of op. cit., Lemme 9.11 (this step was a purely local calculation)"’; hence

we are done. o

arith
syn

3.1.7 - Corollary. The arithmetic syntomic-proétale period map p

period map ofMarith

is homotopic to the arithmetic Fontaine-Messing

Proof. This follows from the Galois descent construction of pi and (3.1.6), since when composed with the

Syﬂ X
natural map R 06t (Z,Qp (7)) = R proet (X, Q,(7)), the period maps p*s‘;in‘h and an’amh give rise to homotopic
morphisms pf;'gm ~ aEM’geom by (3.1.6). O

3.1.8 - Corollary. Let Z € Rigy and r € N. The the syntomic-proétale comparison maps p*i* for Z and P

Syn
Jor Z¢ become isomorphisms after truncation T=.

Proof. The geometric case follows from (') [9, Theorem 7.2]. But alternatively, the geometric and arithmetic
cases follow respectively from the above proposition (3.1.6) and corollary ((3.1.6)), since we already know that the
truncated isomorphisms holds for the Fontaine-Messing period maps [17, Corollary 7.3] for smooth varieties,

which extends to singular cases by éh-hyperdescent. O

13 In op. cit., §8, the morphism @, or more precisely its local and integral version @, 4, was constructed directly as quasi-isomorphisms
of 7="-truncated complexes but not for untruncated complexes , see the formula just before op. cit., Proposition 8.8. This formula was
deduced from ap. cit., Proposition 8.6. But in fact, if we carefully look at the proof of this last proposition, we find that:

* Firsly, multiplication-by-¢* morphism is defined even before the truncation, though it becomes an quasi-isomorphism only after
the truncation;

* Secondly, the multiplication-by-¢" morphism and the morphism f there are quasi-isomorphisms even before the truncation, cf. gp.
cit., Lemma 5.3 and Lemma 5.8 respectively.

Therefore, as it turns out, the op. cit., Proposition 8.6 actually shows the existence of a forward morphism g’ : Kosz(p,d,F ’Rg'/’\v]) -

KOSZ((p,FzA,RQf/’\v] (r)) which becomes a quasi-isomorphism after the truncation 7=". Taking respective Frobenius eigenspaces, one
obtains the untruncated map 0‘9): A which is then globalised to be the untruncated morphism a? in the our text.

4 Again, her statement is for 7="-truncated complexes, but what she proved was not that stronger. In fact, in her proof:

* Firstly, the properness hypothesis was not used there;
¢ Secondly, the morphism op. cit., (33) there which rewrites the (truncated) syntomic cohomology as (truncated) Frobenius eigenspace
of Aqis(—) construction holds for untruncated complexes;

¢ Thirdly, the proof of identification reduces to that of 9p. cit., Lemma 9.2, which says that ‘I'ST(II:IEII <rg0

~ 75
s r, XA\’
for untruncated complexes, see op. cit., Proposition 7.5, or look at the original source of ideas [16, Theorem 4.16].

actually stays valid

15 Let us use the notation of loc. cit. As mentioned in the footnote (I3), the Lazard type period map @ well-defined even before the
truncation, especially because the morphism § is a quasi-isomorphism even before the truncation. Therefore, in the diagram loc. cit., (55),
it is unnecessary to take the truncation 7=’ in order to obtain commutativity, the diagram itself untruncated is already commutative by
the same proof, chiefly thanks to the commutativity of the diagram loc. cit., (57), which was no more than a direct computation showing
that Bhatt-Morrow-Scholze’s 3 is compatible with the morphism S’ of loc. cit..

51



3.1.9 - Remark. Although one might argue that the corollary (3.1.6) can be proven directly by a geometric
truncated quasi-isomorphism statement (say of Bosco [9]) plus Galois descent, without passing through the
identification (3.1.7), we should stress that this Galois descent step might not work naively due to one important
difference between the rigid-analytic setting and the algebraic setting that, the Galois action on the rigid-
analytic geometric syntomic cohomology not being smooth nor having vanishing higher continuous Galois
cohomology groups, taking Galois fixed points is not an exact operation on the complex, which is contrary to

the case of algebraic varieties.

3.2 Construction of morphisms of spectral sequences

Before constructing morphisms of spectral sequences, we introduce a technical result of Nekovai-Niziol.

3.21. Postnikov system on Bloch-Kato type diagrams. Let R be a condensed ring. Let 4 €
@(%N)(Mod?nd) and B € @gf(Modﬁfnd) = Fun(ZOP,@(Mod%md)) and a morphism ¢ : 4 — B. Also, let
r € N. Given such data (4, B,t,7), we will consider a specific type of Postnikov system of Cyyy (1) = Syn(AvB‘L’” =
fib(A49~?"N=0 — B) (where the fixed points are derived) on the Bloch-Kato type limit diagram

FiI'B

Synupn = | 4¥?Y 40 B

lN l(N,O)

| 4 po—p’ 4

in the direction of homotopy limit; namely, it consists of a finite collection of adjacent triangles

gro Csyn(r) grl Csyn(r) gr2 Csyn(r)

T T T

Csyn(r)o (T Csyn(r)l (T Csyn(r)2 (T Csyn(r)3

where
Fil' B
Ao B
Con()’ =Synyp,0 = | 4¥YY gap |- Com(n'= l‘”’o) . Cyn(r)?:=[4], Cyu(r)*:=0.
\LN \L(N,O) A ﬂ)
_A py—p 4
so that

gt Cyn(r) = A®FII'B, gr' Cyu(r) =A@ (A®B), g’ Cyu(r) = A.1°

This gives rise to a Postnikov exact couple
i.j i i & j i- j i- i-1j
Dll /= H](Csyn(r) ) — H](Csyn(r) 1[1]) = HJH(Csyn(r) 1) =Dt
with associated spectral sequence which we call Postnikov spectral sequence

ij j i . ij 8 pi-lj+l
Elj=Hj(grlcsyn(7))ﬁh_rgl("‘_)Dlj —>Dl T — )

16T extend to Csyn(r)® for any index e € Z, one may set Csyn(r)'23 ;=0 and Csyn(r)i = Ceyn (r)[i] for i < 0.
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(under certain conditions). When the filtration is finitely exhaustive, i.e. when Cyy(7)'[—i] S Csyn for i < 0,

this colimit becomes
1111)1( e Hi+j(csyn(r)i [_l]) i Hl.+j(csyn(r)i71[_i + 1]) = ) i) Hi+j(Csyn(r))'

3.2.2. Postnikov and hypercohomology spectral sequences. Let R and S be two condensed rings. Consider
a left exact functor F : Mod} — Mod§, e.g. F = Hom,(S,-) if § is an R-algebra. We denote by RF its right

derived functor.

Let A € ‘@(+¢N)(M0d1.3) and B € 2" (Mod}) and a morphism ¢ : 4 — B, and r € N. Applying
F to the above Posnikov system, one obtains a Postnikov system of RF(Cyn(r)) with graded pieces gr’ =

RF(gr' Cyn(r)), and whence the associated Postnikov spectral sequence
g = RIF (gr' Coyn(r))) = R™ F(Cypn(r)).
On the other hand, without any Postnikov datum, we still have the hypercohomology exact couple
oD} = R F (1517 Cyn(r)) = R F (15 Gy (1)) =P DY
and associated hypercohomology spectral sequence

MR = R'F(HY (Cyyn(r))) = R™ F(Cyyn(1)).

The main technical result that we need is the following theorem, which relates the two spectral sequences

under very restrictive but still reasonable conditions.

3.2.3 - Proposition. Assume that we are in the setting (3.2.2). If the sequence
0— Hj(Csyn(T)) - Hj(gro Csyn(r)) - Hj(grl Csyn(r)) — H/ (gr2 Csyn(r)) -0

is exact, or equivalently, the natural morphism in 2 (Mod})

HJ (Fil’ B)

(3.2.3.1) H! (Cyu(r)) = | Hi(a) g HI(A)® H/(B)

lN l(N,O)

| ) s mia

is an ?somorpﬁism Jor any j € Z, then there is a natural morphism of exact cqyples (limD;’j ,ﬁmE;’] ) —
(hpr;’] ,hYPE;’] ). Consequently, there is a natural morphism of spectral sequences "E;” — WPE} which starts
from the Ey-page with common abutment R™J F(Cyyy (7)), and for spectral filtraions we have "™F c ™PF.

Proof. This is a special case of Nekovai-Niziol’s result [46, Theorem 2.18]. O

To apply this result, we consider the fundamental diagram for X € Rig.

3.2.4. Cy-conjecture and fundamental diagrams. For X € Rig, partially proper or affinoid or X € Rigz
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quasi-compact, we say that the Cy -conjecture holds for X if the following commutative diagram

H}p(X.r) ————— H'(Fil' RTu(X/Bly))

(FD7,) 1 |
geom

(Hiy (X) ®F Biog)*#""=0 —5— H{ (X /Bjp),

which we call the fundamental diagram, is bicartesian for any i = r > 0, or equivalently (since by assumption
on X and using ®"-flatness of Bjog we have H'((RT'nk (X) ®% Biog)? " N=0) ~ (HE (X) ®% Biog)??"N=0 in
the derived sense) that

H' (Fil' RT3y0(X/BYy))

i

’ i = ; (p=p"8) s ;
(FD:r ) I{slyn(X’ T) - HIjIK(X) ®1.;~ Blog — HI-lIK(X) ®1.;~ Blog @ }II:If(X/B;R

lN l(N,O)

r

. po—p .
| Hiy (X) ©F Biog ———— Hfy (X) &% Bug

is an equivalence for i =7 > 0.

3.2.5 - Remark. Though the original conjecture [20] is stated with B in place of Bjog, we prefer using the
latter as it is more geometric from the point of view of the Fargues-Fontaine curve [26]. We will refer to the

original conjecture as the B -coefficient Cy -conjecture.
3.2.6 - Remark. Assume that X = Z¢ with Z € Rig} or Z € Rigg.

(i) Assume that Z is smooth quasi-Stein (e.g. Stein or affinoid). Then for i > r, the diagram (FD;,) is
automatically bicariesian. Indeed, when i > r, the right vertical arrow in (FD] ) is an isomorphism, so we
are left to show that Iﬁ;n(X, r) 5 (HIZIK(X) ®; Blog)¢=pr,N=0. For this, recall that from definition (2.3.11)
and similarly argument concerning classicality of cohomology of the Hyodo-Kato part, we get an exact

sequence

H'™N(RTar(Z/K)®RBlR) [F') = Hy(X,7) = (Hiy (X)@RB)* V=" — H'((RTar(Z/K)®F Bip) | F").

But (RTar(Z/K) ©% Bi) [F" ~ (@, (Z) &% By [F”

~ QY ((Z/K) ®F (Bjp/t™ ")
which belongs to 2197~!I(Mod%), whence the left and right most terms of the above exact sequence
vanish for i > r.

(i) Assume that Z is dagger qcqs or partially proper. If the Cy-conjecture holds for Zc, then (FD],) is
bicartesian for 0 < i < r. Indeed, fix i > 0 and run induction on r > i. When r = i, this is the
Cs-conjecture. Now for the induction step, consider the following commutative diagram

(3.2.6.1)
0 — H

syn

! ; ! }

03 H!

syn

l | l l

(X,7) — (Hjy (X) &% Bog) V=" @& H'(F"(RTun(Z/K) & Bjy)) - Hip(Z/K) &% By

(X,r+1) > (Hi (X) ®F Biog) ¥ N=0 @ H!(F™\(RTr(Z/K) ®% B3)) + Hi\(Z/K) ®% B,

+0

>0

0 ——— H . (Z/K) o2 C @ 0 ————— S Hi(Z/K) &% C - 0

whose top row is exact by induction hypothesis, whose second vertical arrow is exact by [13, Lemma
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3.39, and proof of Proposition 3.36] (cf. [9, Formula (7.15) and its following paragraph]| for the case of
By, in place of B?), and whose third vertical arrow is an isomorphism since i < r. Therefore, the bottom
row is isomorphism, from which we deduce by diagram chasing that the middle row is also exact, thus

showing the bicartesianness for (i,7 + 1).
3.2.7 - Example. Many cases of the Cy-conjecture have been established.

(i) For X proper, this is done by Colmez-Niziot in [20, Theorem 6.2, Corollary 6.15] and by Bosco in [9,
Theorem 7.4] (plus the argument of [20, Corollary 6.15]).
(ii) For X smooth Stein, this is done by Colmez-Niziot in [20, Theorem 6.14, Corollary 6.19] and by Bosco
in [9, Theorem 7.7] (plus the argument of [20, Corollary 6.19]).
(iii) For X smooth dagger affinoid, this is done by Colmez-Niziol in [20, Theorem 6.14, Corollary 6.19] and
by Bosco in [9, Proof of Theorem 7.7] (plus the argument of [20, Corollary 6.19]).
(iv) For X smooth affinoid curve, this is done by Bosco in [9] (plus the argument of [20, Corollary 6.19]).

3.2.8. Now, we invert ¢ in the fundamental diagram (FD],), and define the complex in .@(Modap)

geom

1 —pT — L
Coyn(r) := | (RTHK (X) @F Biog[-1)*7"*=" = (RTunt(X /Bly) ®5, Baw)/F"|.

Consider the commutative diagram

Hi(csyn(r)) EEE— Hi(Fr (Rrinf(X/BgR) ®E§R BdR))

(Hiy (X) 8F, Biog[;1)*" V=0 —=—— H. (X /B}y) €5, Bar

inf

When X is qcgs, the natural map Cyn(r) — R proet(X,Q,(7)) is qegs, see (3.1.3.1).

3.2.9 - Remark. (i) For Z € Rigy, the natural morphism
FilI'(RTr(Z/K) ®% Bir) — Fil'(RTar(Z/K) ®% Bar)

becomes an isomorphism after taking the canonical truncation 7=. We may replace Bqr by t_fB;R for
j € N and prove the same statement, hence ¢7/Bgr is a K-Banach space so that [9, Corollary A.67] is
applicable. By éh-hyperdescent, we reduce to the case where Z is smooth affinoid, this is because the cofibre

of Filr(Q'Z/K % Br) — Fil'(Q‘Z/K ®% Bar) is concentrated in degrees > 7.

(ii) For X € Rig, the natural morphism
A7 P + a7 : + n
Fil erf(X/BdR) — Fil (erf(X/BdR) ®B§R BdR)

becomes an isomorphism after taking the canonical truncation 7=". Again, we may replace Bgr by ¢/ B
for j € N. By éh-hyperdescent, we may assume X to be smooth affinoid, then using Elkik’s algebraisation
technique [25, Theorem 7, Remark 2], we may assume X descends to a smooth affinoid Z over some finite

extension L/K. Then the statement follows from (i).

3.2.10 - Lemma. For partially proper X € Rig, we there is a natural exact sequence
. Y . . 1 —pl — ]
0 — (Hgg(X) ®F Biog)? N0 — (HE (X) ®% Blog[;])(p_p N0 — Hfp (X) ®% Bar/Biy — 0.

Proof. For X smooth affinoid, this is [9, Formula (7.15)]. In general, we would like to take inverse limit; but to

avoid the problem of exchanging countable inverse limit and tensor product — ®; Biog [%], we start by showing
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that [9, Formula (7.15)] remains true for partially proper spaces. Indeed, for qcqs U € Rigg, we have an exact

sequence
0 - E(Hk(U)) ®0 O(i) = E(H{k (U)) ®0 O(i + j) = t.(Hix(U) ®p t /Bl /BiRr) — 0

of coherent sheaves on the Fargues-Fontaine curve, where, £(H};, (U)) is the vector bundle over the Fargues-
Fontaine curve attached to the finite (¢, N)-module Hf, (U) over F. Taking global sections, we obtain an

exact sequence of F-vector spaces
(3.2.10.1) 0 — (Hjx(U) ®; Blog)w:/)",N=o - (Hjix(U) ®p t‘jBlog)so=ﬁ",N:o — H{x(U) ®p t /Bl /B — 0.

because the first cohomology of & (HIfIK(U )) ®o O(i) vanishes by non-negative Harder-Narasimhan slopes
. —— N=nil,
considerations [9, Theorem 3.30 (ii)]. As N is nilpotent on Hjj;, (U) and one can write Bjog = Blog P where

El—(; = 1(i£11 Br(U) is a F-Fréchet space, the above exact sequence can be written as
0 = (Hiyc(U) &5 Biog) ™™ — (Hige(U) ®5 17/ Buog) "™ = Hiy(U) @5 1/ By /By = 0.

Now 731—(; being a F-Fréchet space, passing to limit with respect to an strictly increasing covering of any
partially proper X by qcqs smooth dagger affinoid U, and using [9, Corollary A.67 (i)] and the vanishing
R! l(iLnU (Hj (U) ®; t_fBlog)“’:I”i’N:0 = 0 for i,j € N (cf. proof of [9, Formula (7.17)]), one obtains the exact

sequence
0 = (Hix (X) % Biog)* V=" — (Hi (X) &% t 7/ Biog) *#'V=" — Hi (X) ®% 17/ Bl | Biy — 0.

Again by N-nilpotency on RI'yk(X), this can be rewritten as the exact sequence

(3.210.2) 0 — (Hii(X) % Biog)* "V — (Hi (X) % t 77 Bop)*#"V=" — Hi (X) &% t 7Bl /Bl — 0.

Finally, letting j — 400, one obtains the desired exact sequence. O

3.2.11 - Lemma. For partially proper X € Rig., the natural morphism
RFsyn(X, r) — Csyn(r)
becomes an isomorphism after taking the canonical truncation T='.

Proof. This follows from the observation that TsrCSyn(r) is naturally isomorphic to the filtered colimit over
i>rof TsrRFsyn(X, i) by (3.2.9, ii), the exact sequence (3.2.10.2) and the diagram (3.2.6.1) but assuming in

the last diagram the exactness of the first two rows only at the middle terms. O

3.2.12 - Proposition (Colmez-Niziol, Bosco). The square (FD;,) is bicartesian for all i,r > O such that i < r in

the following cases:

(i) X is a proper rigid space over C.
(ii) X is a smooth dagger affinoid rigid space over C.
(iii) X is a smooth Stein (dagger”’) rigid space over C.

Proof. (i) For X proper, the semistable comparison (cf. [20, Theorem 6.2], [9, Theorem 7.4]) and the degenera-
tion at the Ej-page of Hodge-to-de Rham spectral sequence imply that the diagram (FD, ,) is bicartesian for any

7For partially proper dagger rigid space X € Rigz,, there is a natural isomorphism RI'(X,F') — RI'(X,F) for éh-sheaves F €

{RTyk (=), F*RTiy(=/B%,)} on Ri T (2.2.1 .Therefore, there is no need here to distinguish between dagger and genuine rigid spaces in
dR gc g g8 g g P
the partially proper case.
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i, > 0. Indeed, by loc. cit., for any i > 0, we have H[fmét(X,Q/,) ~ Héit(X,Qp) which is a finite-dimensional

Qj-vector space, and we have a natural isomorphism
; 1 ; 1
HE(X.Qy) 8, Buogl ;1 = Hige(X) @ Biog ;]
compatible with (¢, N)-action, which induces a natural isomorphism
Hy(X,Qy) 8, Bar = Hy(X/Bjy) 85, Bar

compatible with filtrations. In fact, the first natural isomorphism is induced by RIwe(X,Qp(r)) =
7% Rl proet (X, Qy (1)) = RTyyn(X,7) — RIux(X) ®F Biog[ 1] for r > 0.

(ii) For X smooth dagger affinoid, the diagram (FD; ,) is bicartesian for any 7,7 > 0. Indeed, we may freely
use Tate twist to reduce to the case i = r. The bicartesiannes then follows from the bicartesianess of the (FD; )
and [9, Formula (7.15)]. More precisely, we may assume by smoothness and [25, Theorem 7, Remark 2] that

X = Z for some smooth dagger affinoid rigid space over some finite extension L/K. We have

0 = Hi(X,r) — (Hig (X) ®% Biog)**" V=0 @ H'(Fil'(RTqr(Z/L) &1 Bjp)) —> Hix(Z/L) ®, By — 0

:l(&z.u) £ :\L(3.2.9) \[

0 3 H(Con(r) + (H (X) ®F Biog[;1)¥*"¥=" @ H' (Fil'(RT4r(Z/L) ®1 Bar)) —> HJ(Z/L) ® Bir — 0

l l l

(id,0)
H(Z/L) ® Bar/ By ® 0 ————— Hp(Z/L)®L Bar/B} + 0,

whose first row and all columns are exact. Here, the first row is exact by the bicartesianess of the (FD;,) in the
case of X smooth dagger affinoid, and the second column is exact by (3.2.10). We deduce from it the exactness

of the second row.

(iii) For X smooth Stein, the proof is the same as in (ii). O

3.2.13 - Remark. The proof of (ii) actually shows that for partially proper X € Rig., by using suitable
Tate twists, the bicartesianness of (FD7,) implies formally that of (FD;,) thanks to (3.2.9), (3.2.10) and (3.2.11).
Therefore, any partially proper X € Rig, satisfying Cg-conjecture, such as small varieties'® listed in [20,
Theorem 8.1] (including those in (??), e.g. proper, smooth Stein, smooth dagger affinoid, smooth affinoid curve)

]19

and the varieties that are products of proper varieties and Stein varieties [20, Proposition 8.17]"”, are immediate

instances at hand.

We are now ready to construct morphisms of spectral sequences.

3.2.14. Assume (FD;,) is bicartesian for any i,7 > 0. Then there exists by (3.2.3) a natural morphism of

spectral sequences

gy — H™ (Coyn(r)75)

l H

h)’PE;"j RN Hi+j(csyn(r)gl)

starting from the Ey-page with
B = HY (gr' Cgn(r)E)

8Recall that small varieties include proper varieties, qcqs dagger affinoids, analytification of algebraic varieties, certain tubular neigh-
bourhoods of subvarieties of proper varieties or complements of such tubular neighbourhoods. More concretely speaking, a (smooth)
dagger variety is said to be small if its de Rham cohomology is finite-dimensional.

YIn loc. cit., the proper factor was assumed to be smooth. But in fact, the argument there goes through even if we drop out the
smoothness of the proper factor, cf. [9, Proof of Theorem 7.4].
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By’ = H' (G, H (Copn(1)).

3.2.15. Before Postnikov limit spectral sequence, we have another natural morphism of spectral sequences
mapping to it
E) == H"(RUyw(Z.7)) = Hyl(Z.r)

gy —— H'™ (Coyn(r) %K)

starting from the Ej-page from the Postnikov limit type syntomic descent spectral sequence associated to the

similar Postnikov system on RIsn(Z,7)
E = HY (gr' RTyu(Z,1)),

whose Ejy-page yields
syngpboJ . pyi ) ) )
By = HSYN 1 (211}, (2180 g 1) (P REa (21K0)))-

3.2.16. The hypercohomology spectral sequence maps naturally to the Hochschild-Serre spectral sequence for
the proétale cohomology

PPE) e ™ (Ciyn(r)?E)

l l

BSE = H™J (RUprost (X, Qp(r)%E) = H''. (Z,Q,(r))

proét
starting from the Ey-page by (3.1.3.1), with
WSE = H' (%, HP;Oé‘(X,Q[,(r))).

3.2.17. Morphisms of spectral sequences. Combining the constructions (3.2.15), (3.2.14) and (3.2.16) alto-

gether, one obtains a sequence of natural morphisms of spectral sequences

i,j itj
SynEt‘] _ [{Synj (Z’ 1‘)

| |

gy — H'™(Copn(r)25)

l |

hypE;?f — Hit] (Csyn(r)fif‘)

| l

BSEY —— H'Y) (2,Q,(1))

proét

starting at the Ey-page whenever the fundamental diagram (FD;,) is bicartesian for Z¢ and for any i,r > 0;
this is satisfied for example if Z is partially proper and if the Cy-conjecture (3.2.4) holds for Z¢, by (3.2.13) and
(3.2.6, ii).

3.3 Syntomic descent spectral sequence

Let us first make a digression to certain Galois cohomology groups, following [28, Chapitre I, §3].

3.3.1 - Definition (Fontaine-Perrin-Riou). Let V be a solid Q,-representation of ¥x.
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(i) We define H!(9k,V) as the i-th cohomology group of the homotopy limit

H(%x.V & Bj)

i

H @k, V & Bogl 1) “L8 H' (9, V & BiglH] ® V &g, Bar)

lN l(N,O)

H(Gx,V & Buglt) —2— HO(Gx,V 0 Bogl L))

and call it geometric continous Galois cohomology of V.

(i) An extension 0 =V — W — W’ — 0 of solid Q,-representations of ¥ is called an st-extension if the

sequence

1 1 , 1
0 — H' (G, V &, Bugl]) = H' (G, W &, Bugl 1) = H' (G, W' &5, Biog[]) = 0

is exact in Mod;.

(iii) An extension 0 —» V' — W — W’ — 0 of solid Q,-representations of ¥ is called an B, -exact extension

if the sequence
0 — H°(%x.V ®y, Bir) = H'(Gx. W g, Bix) = H’(Gx. W' g, Biz) = 0

is exact in Modz,.

3.3.2 - Remark. If V is a continuous finite-dimensional Q,-representation of ¥, then H° (Yk.V ®q, Blog[%])

is always finite-dimensional with ¥-dimension at most equal to dimg, V' by Fontaine’s period ring formalism.

3.3.3 - Remark. Let § be any profinite set and W’ = Q,[S]® with trivial ¥k -action. Then an extension
0>V —>W — Q, — 0is an st-extension (resp. a BJ,-exact extension) if and only if there is a Galois
equivariant Q-linear section of X — Q,[S]", where X is defined as the pushout

V—e—— W V—mWw
l l resp. l l
V®g, Bugl;] —> X Vey, By — X
in Mod . Indeed, the "exact" extension property amounts to a F-linear (resp. K-linear) section of

H° (Yx. W ®TQ1' Blog[%]) — F[S]™ (resp. of H® (Yx. W ®('b B3r) — K[S]") by (the proof of) [28, I, Proposition
3.3.7]. Using the fact that H"(%x,Q,[S]" ®;2p Biog[1]) = F[S]™ (resp. H*(9x.Q,[S]" ®;2p Bl = K[S]")
which is a compact projective object in Mod; (resp. in Mod;), this is equivalent to the desired existence of
section.

3.3.4 - Remark. Let V be a flat solid Q,-representation of ¥x. We compare H}(¥x,V) with ng‘ (9k,V) of
Fontaine-Riou [28, I, 3.3.3].

First, recall the definition of loc. cit.: consider the sequence in Mod&p[gﬂ

1 1 1 1
(Sg) 0— Q/J - Blog[;] - Blog[;] eaBlog[Z] GaBdR/B;;—R - Blog[Z] -0

with a = a, b — ((¢ = 1)b,Nb,15(b)), (b1,b3,¢) = (Nby — (pp —1)by), which is exact; tensoring this with V,
we still get an exact sequence in MOdi.lp[‘fK]

- 1 - 1 1 . - 1
(Sg(V)) 0>V -V ®Qp Blog[Z] -V ®Qﬁ (Blog[Z] eaBlog[;] 69BclR/BdR) -V ®Qp Blog[}] — 0.

59



The termwise Galois invariant A (9K, —) of this resolution complex calculates the cohomology Hé (k. V).

. . . . . ]
Mimicking this procedure, we have exact sequences in MOde[gK I

1 1 1 1
(Sst) OHQp_’Blog[ ]eaBdR_)Blog[ ]@Blog[ ]GBBdRHBlog[Z]_)O

with @ — (a,a), (b,¢) = ((¢ = 1Db,Nb,t,(b) — ¢), (b1,bs,¢) = (Nby — (pp —1)by), and
1 1 1 1
(Sst(V)) 0>V -V ®&P (Blog[t] ) -V ®Qp (Blog[ ] GaBlog[ ] 69BdR) -V ®(.2p Blog[;] — 0.

By our definition, the termwise Galois invariant H° (9K, ) of this resolution complex calculates the cohomol-
ogy H}(9k,V).

3.3.5 - Proposition. Let V be a flat solid Q, -representation of G . Let v € {g,st}.

(i) The natural map H? (Yk,V) — H° (YK, V) is an isomorphism.

(ii) The natural map H‘}(%, V) — Hl(%, V) is injective, and identifies H(Gx,V)(S) with the sub-Qy-vector
space of H (9x,V)(S) classifying the st-extensions if v = g (resp. st- and B -exact extension if v = st) W
of Qu[S1™ by V.

In particular, Hslt(ﬁ, V) — Hgl(ﬁ, V) — Hl(ﬁ, V).
We ignore whether the map H} (YK, V) — Hg1 (YK, V) is in practice an isomorphism or not.

Proof. For v = g, it is essentially contained in [28, I, Proposition 3 3.7]. It remains to establish the iden-
tlﬁcatlon statement. Notice that Hl(%K,V)(S) = Ext (%x] (Q/, " V) and Hl(%K,V ®51} B]og[ DS) =
Ext 0, 1% (Q/, [S]™.V &g, Blog[ ]). Then we may argue exactly as in the proof of loc. cit., simply by replacing
Q, by Q,[S]", using the remark (3.3.3).

For v = st, the proof is the similar, noticing that [W] € ker(H'(%,V) — H (%x,V &% (B]Og[ 1®BR))) if
and only if [W] € ker(H (%x,V) — H (%, V®('2p Blog[ 1) aswell as [W] € ker(Hl(gK, V) — HY (%, V®;2}0
Bip), soif and only if 0 —» V' — W — Q, — 0 is an st- and Bj,-exact extension by (3.3.3). Similarly for

S-valued points. O

Now let us come back to our syntomic descent spectral sequence. We are going to interpretate the Ey-page

of the syntomic descent spectral sequence (3.2.15) as Galois cohomology groups.

3.3.6. First, we interpretate each term of SV“Eli g , which are on the arithmetic level, as the Galois invariants of

geometric objects.

i) For de Rham cohomology, we have H Z/K)®% Bt ~ H] Zc|By) for any Z € Ri ") by flatness of
gy dR K Par nf y gx by
B}, in Mod}. Using the nuclearity of GlR(Z/K) over K, we obtam by (1.3.5) that

H] (Z/K) o H' (9. BSY)) =~ H Yk, H (Z]K) ®% BSY),

whence

Hy (Z]K) = H' (9. H](Zc|BYy)) = H*(9x. H](Zc/Bjp) ©F: Bar)-

mf

(ii) As for the cohomology of the filtration part, we have that
H/(F'RT@(Z/K)) = H* (9. H' (F'RUu(Zc | BR))) = H' (9. H' (F' (RUiat(Zc | By) ®5. Bar)))

for any Z € ’ngm. Indeed, the filtration F*RI'4r(Z/K) is finite (and separated), because Z is éh-
locally smooth of the same dimension d, so the naive truncation filtration on F*€’, /Kéh
at F™_ We can write Fll;lngme(Zc/B R) = F'(RTaR(Z/K) ®% Bj;) as an iterated extension of

becomes zero
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gr’ RTar(Z/K) ®F "B}, by gr' RUgr(Z/K) &% ' 'Bl;, ., gr' ' RTar(Z/K) ®f% 1B}, and then by
F'RT4R(Z/K) ®% B;; then applying the Galois cohomology computation (L.3.11, i), we get the first
isomorphism. For the second isomorphism, since the filtration F*RI'4r(Z/K) is bounded from below,
say stablising from @ > N +1 on for some N > r; so F'(RT4r(Z/K) ®% Bgr) is an iterated extension of
FNRT4r(Z/K) ®% Bar/t" VBl by FN'RTar(Z/K) &% C(r — N +1), .., F"'RTqr(Z/K) &% C(-1)
then by F"(RT4r(Z/K) ®% By;); then applying the Galois cohomology computation (1.3.11, i), we get
the second isomorphism.

(iii) For the Hyodo-Kato part, we have

B (2) = H (G, B (Z6) 8 Buog| ;)

for Z € Rigg) which are qcgs (2.1.22) (2.2.6) or partially proper (2.2.7).

As a result, for any Z € Rigg) that is qcqs or partially proper, the E-term Sy“E;’j is the i-th cohomology
group of the homotopy limit

H'(Yx . H/ (Fil' (RTine(Zc / Bly) ®%. Bar)))

— dR
. ( — ,,L) . .
HO(%sH]{IK(ZC) ®1.;~ Blog[%]) i) Ho(%,HI{IK(ZC) ®;~ Blog[l] ® H!

t inf

lN l(N,O)

H(Gx. Hjp (Zc) &% Buog[4]) B H(Fk.Hj(Zc) &% Bug[}])

(Zc/BR) ®1';;R Bgr)

thus finishing our interpretation.

Finally, we focus on the proper case.

3.3.7. Proper case. Let Z € Rigy, be proper. By the semistable comparison theorem (3.2.12, i), the above
diagram is identified with

H(9x . H)(Zc.Qp) ®q, t'BL))

i

HO (Y, H(Z6,Qp) 8, Bogl 1) ™28 HO (G, HL(Z¢,Qy) ®0, Bigl 1 ® H(20,Q,) €, Bar)

lN l(N,O)

H"(x, H)(Zc,Qy) ®, Biogl}]) —52 5 HY(%x, HI(Zc,Qy) ®q, BuglL]).

Hence, we can identify
(3.3.7.1) YEY = Hi(Yx, H](Zc,Qy(1))).

A sanity check through the constructions implies that the morphism of spectral sequences on the Ej-page
Sy“E;’] —HS E;’] is identified with the natural map HS’t(%_K, Hé]t(ZC,Q[,(r))) — Hi(%_K,Hé(ZC,Qﬁ(r))).

3.3.8 - Remark. (i) As we can see by degeneration of Hodge-to-de Rham spectral sequence at the Ej-page
for proper Z € Rigy, the map H/(F'RT4r(Z/K)) — H(fR(Z) is injective onto FTHG{R(Z), with cokernel
identified with Hy, (Z/K)/F" ~ H*(9x.(H{;(Z/K) ®k Ba)/F") ~ H"(%x.(H! (X /B3}) ®';R Bg)/F").
The same argument as above using the semistable comparison theorem (3.2.12, i) shows that we can also
identify

L = HE (e, HL(X,Qp(1))).
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(ii) Alternatively, one can show directly that H} (Yk.V) S Héf (9k,V) under the condition that V ®;2/)
Bgr = (M,Fil*) ®% Bgr is an isomorphism compatible with filtrations for certain filtered K-module (A,Fil®).
This applies for example to V' = H(i(ZC,Q[,(r)) for proper Z € Rigy by semi-stable comparison theorem
(3.2.12, i). Indeed, the exact sequence 0 — Fil'’M — M — M /Fil" — 0 is identified, by computation of Galois
cohomology of C (i) (1.3.11, i), with the exact sequence

0 — H(Yx Fil' (M ®k Bar)) — H*(9x, M ® Bar) — H"(Gx.(M ®k Bir)/F") — 0.
Under the assumption, this is again identified with
(3.3.8.1) 0— H(%x.V ®q, t'Bjp) — H’(9x.V ®q, Bar) — H(¥x.V ®¢, Bir/t'Bjy) — 0.

This implies immediately that H(%k.V) S5 H; (9k,V) by comparing the termwise Galois invariants
H° (9K, —) of the complexes (S, (1)) and (Ss (V).

4 Chern classes of vector bundles and regulators

4.1 First Chern class maps

4.11. Crystalline construction. Let us first recall Tsuji’s construction of the log-crystalline first Chern class
(following Kato) [55, (2.2.3)]. Let 2 be an integral and quasi-coherent log-scheme over a quasi-coherent log
pd-scheme St = (S,L,1,y) with p € Og nilpotent.

Assume first that there is a log pd-$¥-smooth thickening 2 < P with log pd-envelope 2 < D (if &
is moreoever log affine, then there is a universal coordinate such thickenings P"™" [4, 1.4, Remark (iii)], which

however is not necessarily of finite type). Our goal is to construct a map
gp .
M7 — Op @0, Wp st [1]

in P(Z4,Z). This map will be constructed only in the derived category, as the composition

~ (log.dlog) .
(4.111) ME — (+ Jp > M) =" (Op = Op ®0, wy, g, = +++) = Op ®0, w}, 1]

in 9(Z%.,Z), where 1 + Jp and MSP sit respectively at cohomological degrees —1 and 0.

In general, we follow the procedure of [4, 1.6, Remark| using an embedding system E = {Z, < P,}; such
liftings form a cofiltered system [35, (2.21)]. Let Z, — D, be the log pd-envelopes of 2, — P,, defined by the
pd-ideals Jp, := ker(Op, — Oz,). We have an adjoint pair of topos

0" 2 — 2l 1 0.

and their derived functors 8* 4 R6,. We have a map by (4.1.1.1)

(4.11.2) 0" M5 = M3 — Op, ®0,, w}, e 111

in 9(%%,Z), which induces by adjunction the log-crystalline first Chern class map
(4.113) ¢ 2 ME = RO.(Op, 80, w}, )[1] = Rui;f/ 2,0 5al1]

where the last canonical isomorphism is given by [35, Proposition 2.20].

62



4.1.2 - Lemma (Compatibility of log-crystalline first Chern class maps). For any commutative diagram

z Ly

Lol

st Ly g

with %" an integral and quasi-coherent log-scheme over another quaso-coherent log pd-scheme S'* with p € Og

nilpotent such that the underlying morphism of schemes is locally of finite type, the following diagram

M < oM

ccris ccris
L2 /st L2 /54

lo, « lo
Ru;/su*og/sg[l] — g R”;/S,u*of'/s'”[l]

in (%4, Z) commutes.

Proof. 1t is easily checked by choosing compatible embedding systems, which is possible by existence of uni-
versal coordinate thickenings. O

4.1.3. Characteristic p setting. By this we mean that § f is a fine log pd-scheme endowed with a Frobenius
action F lifting that of § y p and Z is a fine log-scheme in characteristic p over .S f

414 - Lemma. Let % — 8% bea characteristic p seiting. Consider the natural Frobenius action ¢ on Ru.O 4 /.
cris
Then Crop g0 Jactors through o i
M3 — (Ru.O g 50)F.

Proof. The embedding systems considered in (4.1.1) can be taken to be equipped with compatible Frobenius
liftings £ = {2, <— P,}, whose log pd-envelopes Z, < D, are equipped with induced compatible Frobenius
liftings Fp,. The Frobnius action on Ru*(’)g/su =~ R0.(Op, ®0p, w; /Sﬁ) is induced by Fp, and Fp,. The map

(4.1.1.2) whence (4.1.1.3) is Frobenius equivariant. Then we are done since ¢ = p on Mg,f for 2 in characteristic
2 O
415 - Example. Let L be a finite extension of Q, with residue field £;. Let 3 be a semistable formal scheme
over O with log-structure M3 — O3 induced by its special fibre. Let X = 3 ®ox Og.

Consider the following p-adic formal log pd-schemes:

*» SpfZ, with trivial log-structure,
o Spf OgLiV,
* Spf rfD’O with log-structure induced by the ¢,’s for a € (my, /mi)\{O}, together with log pd-thickening

PD,0
po : Spec (910;]”1 < Spfr, ",

Spf r{D with log-structure induced by the ¢,’s for a € (mL/m%)\{O}, where [ is a Op,-class in
(mg/pmz)\{0} determining a log pd-thickening p; : Spec Of, — Spf rED lifting po,
0 .— 0
Spf Oy, = Wa(kL)",
Spf O,
o SpfAX

cris?®

. Spfzzfl,st, where [ is a Op-class in (m¢/pme)\{0}.
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They have respectively SpecF,, Spec k™, Spec k{t,} and Speck; as reduction modulo p which all receive
maps from 39, and are related by morphisms of p-adic formal log pd-rings

Zp — OtFr]iv PD 0 bo

Applying the construction (4.1.1) to these settings, one obtains respective first Chern class maps

. 1“,;5 for 3, over §¥ = Z, or Om"

. Pl; for Sﬁ—rf 0 , and chlfor Sﬁ—rL
. HI% for % = (’)0
. JR for 3, over Sﬁ o7,

. "‘s for X, over §¥ =

. 13”forS —A[st

crls >

4.1.6 - Lemma. The first Chern class maps cl 3 and cl 3 K factor respectively through

PD 8p o=p.N=0
1’31 M%() (Ru*osi)/rin,o) [1]

HK gP ¢=p,N=0
131 M (Ru*Oso/ HKO) [1]

Proof. The compatibility (4.1.2) affirms that the diagram

cris
131

M§P _— R”*O&/Z;[ ]

” Ecm ~

L3
Mgp Hl Ru*osl/o;%v [1]

cris
l c <4

139

Msgp H Ru*O%O/OmV[ ]

PD
” ¢ 4

139
Mig — Ru, O 0,70 (1]
|

Msgp —) Ru*o3()/0() [1]

commutes. The fourth right vertical map is N-equivariant. Moreover, by [36 Lemma 4.2], the third right

vertical map factors through R”*O&/O‘;‘V S (Ru*o,%l/rm,o)N:o. Hence c D and MK factor respectively
L ~ L

1.3 1,50

through

PD gp N=0

1 {%1 M31 (Ru¥03?/'1]?D0) [1]

L‘I:I\,;(O : Mis (Ru, OSi)/r;:IK,())N:O [1].

Then (4.1.4) helps conclude. O
4.17. De Rham construction. Next, let us recall the construction of the rigid-analytic de Rham first Chern
class map
(4.1.7.0) o1 0F - FI'QY (1]

of éh-sheaves over Z for an rigid-analytic variety Z over K, and that of the infinitesimal By, first Chern class
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map
(4.1.7.2) ¢ 0% — Ruy 182+ Omix e, [1]

of éh-sheaves over X for an rigid-analytic variety X over C. Here, UX B+ denotes the canonical morphism of
sites from (X /B R)mf to Xep.

Assume first that everything is smooth. In the geometric case, one can proceeds as in the crystalline case
using embedding systems, so as to reduce to the case where there exists X < P with latter smooth over B},
In this case, letting D be the envelope of X in P [31, Definition 2.2.1, and §4.1], our map is then constructed as

~ (log dlog) o
(417.3) Ox « (1+ Jitp — Onep (Ointp = Outd ®0,p QIP/B:{R — ++) = Omtp ®0yp QP/BCTR [1].

in 7(Xe,Z), where the last complex is identified with Ry (X /BJ;) [31, Theorem 4.L1]. The logarithm is

well-defined. Indeed, by definition, if we let 7 be defining ideal of X in P, which is a coherent ideal, then

D = 11_11;1 N hp, where P, is the n-th infinitesimal neighbourhood of X in P, defined by the ideal I and
n

Op = 1<i£1neN Op,, Juip = ker(Op — Ox) = l(iLnneN ker(P, — Oyx). The logarithm is well-defined on

1+ ™! — Op, by I-nilpotency and since we are over Qy; then it suffices to pass to the limit.

For the arithmetic case, one could do the same using the infinitesimal site (Z/K )iy which calculates de
Rham cohomology [31, Theorem 1.2.1 (iii)], but it would be far more elementary if we define cldR directly as the

map of genuine complexes
dlog
— QL — Q2

1o
Z|K Z/L --) =Fil Z/K[ ].

In general for singular X, éh-descent suffices to conclude.

inf

Using infinitesimal interpretation, we see that c R and ¢,™ are compatible.

4.1.8 - Lemma. The map cldR Sactors through

mf X 1 o
: 0% —>F11HGlg X/BL-

Proof: In the case where there exists X < P with latter smooth over B;R and D is the envelope of X in P, it
1
wr 2pypr
-+) = Fil' (Ot D ®0ycp Q5 /Bt )[1]. In general, it follows from simplicial construction then éh-descent. O
dR

is easily from the expression that the second map in (4.1.7.3) factors through (_fintp — Ouep ®0

4.1.9. Syntomic construction. For 3 € M3, we want to define its syntomic first Chern class map

(4.1.9.) i}én Mgp - Rrsyn(sli’l) (1]

in 7((3y)et. Z).
By (2.3.3), we may use the natural identification Rl (3,,1) = [chris(g)gp — RFdR(S,]/K)/Fill].

Consider the following diagram

cns

I'(3, Mgp) —> chns(B) [ ] —— chrls(S/OZ)Qp (1]

(419.2) l W lz

(34,03 —> Fil' RT4r (3,/K) [1] — RTar(3,/K)[1]

where the left vertical isomorphism results from M P~ (’)X i and the right vertical isomorphism will be

cris crdR

recalled below. Now, for commutathlty, the maps ¢ and ¢

crdR

are naturally compatible by (4.1.2), and
we will now show that ¢ and c1 are compatible by s1m11ar1ty between constructions of crystalline and

infinitesimal cohomologies. Let & : (3;/L)int — (3/O] )eris be the morphism of sites defined via the generic
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fibre functor sending (U — T) over OF to U, — T, over L. Then @ induces a morphism Rl cis(3/0F) S
Ra.RTiy(3,/L). Since 3 is semistable, 3 is log-smooth over OF and 3, is smooth over L, hence in our
definition of first Chern class maps, one can choose 3 — B and 3, — P to be identities. This gives the
following commutative diagram

~ (log.,dlog)
8P 8p 1
M3 (—(1—>M3)—>((’)3—>w3/oz

Lol ! [

~ (log.dlo, ~ N
a*(’)?fn ~(1- a*(’)iflf,s” BN g(a*Oinf,s,, - a*Q},)y’/L — ) = Ra*Q?M/L [1]

w3 05111

crdR
1

isomorphism, we notice that RF(S’”Z&/OZ )Q, S RF(S,],Q%]]/K) for affine J semistable over Op).

which calculates the diagram at the beginning of the proof involving ¢ and cldR; for the right vertical

By commutativity of (4.1.9.2), the morphism crystalline Chern class map cfris factors through the fibre
[RD cris (3)67 — RUr(3,/K)/Fil'] = RTyn(34,1), thus defining (4.1.9.3).

Finally, for Z € Rigg, by éh-descent, one defines its syntomic first Chern class map
(4.1.9.3) " Oy — Rl (Z,)[1]
in 9(Zg,Z). Taking first cohomology, we obtain (by abuse of notation) a morphism
(4.1.9.4) " Pic(Z) = HY(Z,0%) — Hy\(Z.1).

In other words, we may associate with any line bundle £ on Z; a class clsyn(ﬁ) € Hs%,n(Z, 1).

4.1.10 - Remark. We could also have defined syntomic first Chern class using clHK and c{iR if we have proven
the compatibility between them, however, it seems that this might exist locally and there depend on the choice

of a uniformizer of varying base fields L. The construction is as follows.

4.111 - Proposition. Let 3 € M3y with splitting field L, and choose a uniformizer @ € L. Then the following

diagram commutes

HK
a

RT(3.M5") —— RF(B?,M(?? — Rlwis(37/0%,)g, (1]
~ 1

arith
l lLHK
dR

RI(3,,03) ——> Fil'RTar(3,/K) — RTa(3,/K)[1]

whose homotopy depends on the class l; = [@] in my/pmy and commutes with N. Moreover, the syntomic first
Chern class map defined by this is equivalent via certain homotopy depending on ©t to that of (4.1.9.3).

Lacking independency nor naturality on L of this homotopy, we are not sure how to deal with its global-
isation. But the lemma remains useful, because in applications, we will often reduce the statement to certain

local statement by other naturality results, where we then use this lemma to check isomorphisms.

Proof. The last statement follows from the commutativity, the equivalence (2.3.4), the compatibility between

clHK and cl”is (4.1.2), and that between cl“is and cldR (4.1.9.2). We only need to treat the commutativity diagram.

We may assume 3 to be qcqs by Zariski descent; then RT'qr(3,/K) is represented by a bounded complex
of K-Banach spaces, so that (1.3.11, ii) applies. Let X = 3 ®p, O¢ € Mscs’b. By definition of Hyodo-Kato
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morphisms (2.1.4) and compatibility between c{jR and cli“f (4.1.7), it suffices to prove that the following diagram

RF(B’M\%p) — RF(SlaMgp) —> chrls(go/(9 )Qp[ ]

(geom
‘HK
inf

C

RI(%,,0% ) ‘ > RTu(%, /B [1]

commutes ¥k -equivariantly. The choice of uniformizer @ € Oy, determines a morphism rIIjD — A;_ s, whence

identifying Lielgm through a homotopy a, with

RTeis(3] /05, )g, = RTais(31/71°)g) ™™ = RTeris(%1/ Ay ), "™
<_ RFCI‘IS(x/ CrlS)Qﬁ ®B+ B;—t
- erf(fn /B R)

Here, 1, is the Hyodo-Kato section, which is (¢, N)-equivariant [19, Theorem 2.12, Proposition 2.14].

PD
1 11

compatible with ¢ Acris , which is in turn compatible with cinf by similarity between crystalline and infinitesimal

Hence ¢; - is compatlble with ¢ by naturality (4.1.2). On the other hand, still by naturality, clstl is

cohomologies via the morphism of sites (¥,/ dRm)mf — (X/A%)eris defined by the functor sending a pair
(W — T =SpfP) over AX, to (U, — (IBSR =Ty XspaB', Spa BY, = Spa(B®4_. B, )) over B}

cris dR,m cris dR m dR,m"

It remains to show that there is a homotopy ¢g; © clHK ~ 1PD commuting with N. It is enough to show

that their difference ¢ := ¢ o clHK IP D is homotopic to zero. By compatibility of cPD and cHK via the natural
map po : rL - (’)0 - and by the (¢, N)-equivariance of the isomorphism RI ¢ (3?/(9 )Ql» ®FL TED[p] 5

RTi5(31/ rPD)Qp, the difference ¢ factors ¢-equivariantly through

' : RT'(3) ,M§§> — RTais(37/0%, ), ®F, Al1]

where I = ker(r}° — Op,) [’%], which is a F7-Banach space. Now, we need to show that the map (by abuse of

notation) on cohomology groups

(4.L1L1) &' Hy (30, M%) — HL3(37/0%,)q, ®F, I

30 Cris

is equal to zero.

For this, we need more notation. For n € N, denote

(4.111.2) I, = {Z ‘Ltly | a; € Fy, lim a; = 0} c rfD[%]-

This 1s a F linear closed (whence Banach) subspace (even an ideal) with finite-dimensional complement
@l -0 FLL ‘T and does not depend on the choice of a € (mL/mL)\{O} The n-th power of frobenius ¢”

on rED when restricted to I factors through 1, i.e. ¢" () C I,.

Now we treat the vanishing of (4.1.11.1). Knowing that cp(cPK) = pclHK and tp(ch) = pc , we have
¢(6’) = pd’. By ¢p-equivariance of §’ and invertibility of ¢ = p on RFét(S?,M\i?)Qp, we have §’ = #(p"é'
factoring as

Hi(3) ,Mg*’> — H1(3)/0%,)q, ®F, I, — HL (3]0} )o, ®F &

Hence ¢’ factors through

n71 1
" HL(3) ’Mgp) - hm(Hcersl(Si)/OFL)Q,a ®F, A TED[;])
where the transition maps are induced by inclusions of ideals 7, = tf"_lrED c P, Since 3 is affine,
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cris

RFC,iS(B?/OgL)Qp is represented by a bounded complex of F7-Banach spaces (2.1.8). Hence H”%S?/O%)QI

is the cokernel of a morphism between F7-Banach spaces. The lemma (1.2.9.1) allows us to conclude. O

4.112 - Remark. We could also have resorted to the derived limit approach, knowing that RFHK(S?/ O%L)Q/’
is a bounded complex of Fj-Banach spaces, for which tensor product commutes with countable products on
P : P"-1 PDr1y o pli; p"-1 PD177_
each factor. Apparently however, this will not work, because Rl{lnn ly 17 [P] ~ R l(inn ty 11 [p][ 1]
which does not vanish by easy computation, e.g. F(T') — [[y F is not surjective. However, the last map is

injective, which was our principal motivation of vanishing results in (1.2.9.2).

4113. Etale construction. For Z either schemes or analytic adic spaces (so that O} is an étale sheaf [34,
2.2.6]) over K (which is a nonarchimedean field of characteristic 0), there is a short exact sequence of étale

sheaves named Kummer sequence on Zg
X X
0> up -0, ->0; -0

for any n € N, from which we obtain a mod p" étale Chern class map Oy — pp|[l] in D(Zg,Z/p") —
D (Ze,Zy), whence an étale Chern class map

0% — Z,()[1].

The algebraic and analytic étale Chern class maps are compatible through the analytification functor.

4.2 Projective bundle formula and A!-homotopy invariance

4.2.1. The (relative) cup product is defined in general for morphisms of ringed spaces [52, ] In

many cases, it can be quite explicit and such formula could be useful for proving compatibilities.

The relative cup product is compatible with respect to commutative squares, namely, for any commutative

diagram of ringed spaces
x £ x
I
v S5y

and F,G € Modpy,, the following diagram commutes naturally

g REFIREG) —£ L »RE(F 0 G)

l !

(Rf:k/ghsF) ®L (Rf:k/gl*G) —_U—>Rf:k/(g/*F®Lgl*G)

This follows formally from loc. cit.. Indeed, the vertical maps are induced by g*Rf. — Rf/g’*, adjoint to
[P Rf. ~ g f*Rf. — g’* the g’ o counit. The adjoint diagram (associated to f"* 4 Rf,’) of the above is
then

¢ REF " REG) £ o fRA(F @ 6)

lunitog’* ocounit lg’*ocounit

counitog”*

f’*(Rﬂ/g,*F) ®L f/*(Rﬁzg/*G) s gl*F ®L g/*G

The lower left two morphisms composed to a diagonal morphism g’* o counit, hence its natural commutativity
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is reduced to the commutativity of the upper triangle, and a fortiori that of the triangle

FAREF o REG)-SS FRrE(F &L G)

counit

FeraG.
But the diagonal morphism here is by definition adjoint to the cup product — U —, whence the commutativity.

4.2.2. Product structure on log-crystalline cohomology. Let 2 be an integral and quasi-coherent log-
scheme over a quasi-coherent log pd-scheme S% as in the setting of (4.1.1. The product structure on log-
crystalline cohomology RUs(2°/S8) is described as induced from the product structure of Op ®¢, w5, /st
when 2 < P is a log pd-S*-smooth thickening with log pd-envelope 2 < D, then by étale hyperdescent
in general cases. It satisfies higher associativity relations. The product structure thus defined is natural with
respect to morphism of log-crystalline sites, and is compatible with Frobenius action in the characteristic p

setting (4.1.3).

4.2.3 - Example. Let us continue the example (4.1.5): let 3 € M3 with splitting field Z; let [ be a Op, -class
in (mz/pmz)\{0}. The natural morphisms

chris (3) - chris (SI/TED)I - chris(S?/rlljD’O) - chris (3?/02&)

are compatible with ¢-equivariant product structures.

4.2.4 - Lemma. Consider a OF, -class | € (my/pm)\{0} associated with i} : rED —» Oz’l lifting rED —» O%L,l
along (’)zl - O%I 1+ Then the Hyodo-Kato section o : RT cris (3?/(910%)% — RT s (31/r£D)l7Qp is compatible with

product structures.

Proof. The same strategy of the last part of the proof of (4.L11) applies: one looks at the difference of two
maps 0, which factors through R ¢s (3? / OIOVL)QP ®;L L[1]. By ¢-equivariance of §’ and invertibility of ¢ on
chris(Blo/OgL)Qp, we have 8’ = ¢"6’¢™" factoring as

6 RT 56 (3?/(9?&)% ®1{‘?L. RFcris(S?/O%L)QP - chris(S?/O%L)Qp ®1.7L L, [1] = Rl (3?/021)% ®;‘L L[1].

Then we apply (1.2.9.1) to conclude. O

4.2.5 - Example. Let us continue the example (4.2.3), focusing now on the monodromy operators. We claim
that for M € {RUeris(31/77°)10,» R eris (3 /77", RT s (3] /0%, ), }, the product structure is compatible

with the monodromy operator in the sense that the following diagram commutes

MM — M

lN@idM+idM®NlN

MM — M

and satisfies higher associativity relations. Indeed, in these cases, the monodromy operators are induced (in a

canonical wayzo) from the Lie algebra action of an—action on such M (cf. [19, Paragraphs around (2.15)]), and
the concerned product structures are all G,hn-equivariant. The equivariance of the Lie algebra action is then

illustrated exactly by the diagram above.

42.6 - Lemma. Let (4,¢), (B,y) and (C,x) be three objects with endormorphism in a ®-stable oco-category
(hence have fibre sequences and additive structure on Hom’s), together with a pairing u : A ® B — C such that

20We took the rational coefficients to make the monodromy action canonical, i.e. N = %l(’)t [19, The paragraph after (2.15)].
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Ya®xB+ xa®Yp is compatible with Y, where y 4 € End(A) and y p € End(B). Then u induces a unique
pairing fib(y4) ® fib(yp) — fib(y).

Proof. This is formal, and can be read off from the following commutative diagram

fib(y4) ® fib(yp) ——-+ fib(Yc¢)

| |

AeB —L s ¢

l‘wa@XB‘*‘XA@(//B llﬂc

49B ——— C
whose left column composes naturally to zero. O

4.2.7 - Example. The natural morphisms

chris (S)Qp - chris (31/7']}‘11))2]?]5{,0 — chris (3?/751)’0)&:0 - chris (3?/09&)&:0

are compatible with ¢-equivariant product structures, where the last three objects are endowed with the canon-
ical product structure by (4.2.6).

4.2.8 - Example. We want to study product structures on Frobenius fixed points (=)’ for r € Z. Intuitively

r+s

speaking, the product of a ¢ = p” eigenvector and a ¢ = p* eigenvector should be a ¢ = p"™ eigenvector, so

we should expect a product structure on Frobenius fixed points of the form

APt @ BEP ¥
We claim that it is indeed the case. For this, in order to apply (4.2.6), consider ¥4 = ¢4 — p", x5 = p°,

X4 =p'¢sand Yp = gp—p'. Then Y4 @ yp+ x4 ®Yp = pa® pp—p
It is direct but probably tedious to check that the product structure thus defined satisfies higher associativity

r+s r+s

is compatible with ¢¢ — p

relations.

As a result, the natural morphisms

=p" =p" N=0 =p" ,N=0 =p" ,N=0
-chris (S)Spp - chris (3l/rIPiD);0’Q1; - chris (3?/7{])70)1&)[’ - chris (3?/022)&1)

for r € Z are compatible with product structures.

4.2.9. Product structure on de Rham cohomology. For Z € Rigy, we have a product structure
Fil' RTyr(Z/K) ®%® Fil' RT4r (Z/K) — Fil"™"* RT4r(Z/K)

for 7,5 € Z induced from the one on the level of complexes of sheaves. For X € Rig, similarly (combining

the the log-crystalline setup (4.2.2) and the de Rham setup above), we obtain a product structure
Fil" Rl (X / B}R) @K™ Fil' RTnp(X /Bir) — Fil'" RTyue(X /BiR)

for r,s € Z. They all satisfy higher associativity relations.

For 3 € M% with splitting field L and X € M, the natural "base change” morphisms RI'cis(3/ 05) —
RFCris(SU/K) and chris(f/AX

cris

) = RTing(X;/B,) are compatible with product structures, again by similar-

ity between crystalline and infinitesimal constructions.

To induce the product structure on syntomic cohomologies from the above, one needs the following

lemma.
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4.2.10 - Lemma. The Hyodo-Kato section v : Rl“ms(?)? / O%L)QIJ — RFC,iS(B? / rED’O)Qp is compatible with product

structures.

Proof. The same proof as (4.2.4) (or by composing ¢(; with the natural base change map chris(?)l/r{D)l,Qﬁ —
chris (SIO/TED’O)Qp) O

4.2.11. Product structure on syntomic cohomology. Let Z € Rigy and r,7’ € N, there is a natural product
structure [55, §2.2]

(4.2.111) RT3y (Z,7) @G RUyn(Z,1') = RUyn(Z,7 +7")

given by the formula (x,y)®(x’,y") — (xx’,(=1)7xy"+y¢, (x")), but we explain it now using previous construc-
tions. For this, taking the Bloch-Kato point of view, we need to show that L?{rﬁh : RFC,iS(S? / OgL)gp N0,
RT4r(Z/K)/Fil" is compatible with product structures hence induces a canonical product structure on its
fibre RF?YIE(Z, r). Again, we may work locally and assume that Z = 3, with 3 € M$% with splitting field L.
Going through the construction of (2.1.4), using (4.2.3), (4.2.7), (4.2.8) and (4.2.9), we only need to prove that the
Hyodo-Kato section ¢ : RFC,iS(S? / O%L)Q/z — RT s (310 / rED’O)Qp is compatible with product structures; but

this has just been done in (4.2.10).

Moreoever, the maps of the diagrams in the proof of (2.3.3) are compatible with product structures
again by (4.2.3), (4.2.7), (4.2.8), (4.2.9) and (4.2.10), whence it is the same product structure as defined by

RIDN(3.7) = [RTuis(3)" — Rleis(3)g, /Fil'].

4212 - Lemma. For Z € Rigy, the natural syntomic-proétale period map p™™ is compatible with the product

syn

structure on syntomic cohomology.

Proof. In light of the construction of the syntomic-proétale period map (3.1.3) by taking Galois invariants of
the diagram (3.1.3.1), it suffices to show that each morphism in this last diagram is compatible with product
structures, and that the maps RIn(Z,r) — RIn(Zc¢,7) is compatible with product structures. The second
compatibility is clear by construction. The first compatibility follows from the (¢, N)-equivariance of the
comparison map RI'ux(X) ®;_ Blog[%] — RTproet (X, Blog[%]) as can be deduced from (3.1.2.4). O

4.2.13. Products with first Chern classes. Let £ be an (analytic/étale) vector bundle of rank d +1, d > 0, on
Z. Let m : Pz(E) — Z be its associated projective bundle and O(1) be its canonical bundle. The syntomic
first Chern class (4.1.9.4) defines maps

syn P NS L aoMm)u- )
Cl (O(l)) Um : Rrsyn(z’r - l) - Rrsyn(PZ(g)’r - l) - Rrsyn(PZ(g)vr) [21]
for 0 < i < r. Indeed, (4.2.11.1) induces a map
RT4n(Z,1) » RHom(RI gy (Z,7 = 1), Rlyn(Z, 7))
hence taking H?, one gets
H\(Z,1) » Hom(RTyyn(Z,7 1), RTyyn(Z,7)[2]).
The image of a class ¢ is the cup product denoted by ¢ U —. By itertation on 7, one obtains

1_[ H;\(Z,1) » Hom(RTgyn(Z,r — i), Ry (Z,7)[2i])
i

for 0 < i < r. The image of the constant tuple clsyn(O(l))[[l'i]] is denoted by clsyn(O(l))iU.
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Similarly, for Z a scheme or analytic adic space over K, the étale first Chern class (4.1.13) defines maps
1 (OM) U™ : RTa(Z, 5" ™) > RTa(P7(E), 1) [24]
whence maps
¢t (OM) Un™: RTs(Z,Zy(r — i)) > RTe(P2(E),Zy(r))[2i].
These commute with the analytification functor since so do ¢* and — U — by (4.2.1).

4.214 - Lemma. Let 3 € MY with splitting field L, and choose a uniformizer w € L. Then the product
structures on R i (3, /(90 ) and RT4r(3,/K) are compatible across the arithmetic Hyodo-Kato morphism La"th
whose homotopy depends on the class l; = [@] inmg/pmy.

Proof. The same strategy as in the proof of (4.1.11), whose most essential part is dealt with in (4.2.4). O

4.2.15 - Proposition (Projective bundle formula). For r > d, there is a natural isomorphism

d d
B OW) ur') : B RUgn(Z,r - i)[-21] > RTyn (P2(E),7).

i=0 i=0

Proof. By admissible descent, we may assume that £ = (’)2(‘“1), then Pz (&) = P%. By éh-descent, one may
assume that Z = 3, where 3 € MY is affine with splitting field L, which we may furthermore assume to be
algebraizable to an affine scheme 2 flat and n-smooth over Oy whose p-adic formal completion is 3 (by [25,
Theorem 7], cf. [53, Corollary 3.3.2]). By compatiblity of first Chern class maps (4.1.11) and product structures
(4.2.14), we are reduced to showing that

(Projux) @(q‘ﬂ‘(oa»’um @RFHK(Z)[ 2i] > RTuk(P})
(Projar ) @(CFR(O(I))’UN) @Flv 'RT4r(Z/K)[-2i] = Fil’ RT4r (P%/K)
i=0 i=0

are isomorphisms. Since Z has a semistable model 3, (Projuk) reduces to (Projar ;) with 7 = 0 by the Hyodo-
Kato isomorphism (2.1.9). So it suffices to prove (Projqr ;). Recall that the algebraic analogue of it holds for 2,
cf. [46, Proof of Proposition 5.2]; indeed, the statement, being analytically local, is refined to a sheaf theoretic

isomorphism
d
.al, i pl s . i al .
(Projjs ) Q?(c;ﬂ‘(oa)) lge) @Q 2k [-2i] = Rx gQP;f .
i=
which can be easily checked on stalks [52, , |- By relative GAGA [21,

Example 3.2.6, Appendix (A.11)] [40, §p. 43-53] and compatibility between algebraic and rigid-analytic de

Rham first Chern class maps one obtains

(PrOjARJ) @(CldR(O(l))l U ﬂ.alg*) @ Q;;)ZH/K ] - R?T*Q;Z; )an/K

Since Z = 3, = Q‘”,]rig is an affinoid open subspace of (Z)*", one obtains (Projgr ;) by taking RI'(Z,-) of this

isomorphism. O

4.2.16 - Proposition (A'-homotopy invariance). Let 7 : A}, — Z be the relative analytic affine line over Z. Then
Jor any r € N, the pullback induces a natural isomorphism

7t RUgn(Z,1) — RTyu(AY, 7).
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Proof. We are reduced to showing the Al-homotopy invariance of RT'yg (—,7) and Fil* RT4r(—/K) respectively
for Z € Rigy and r € N. By éh-descent, one may assume that Z = 3, where 3 € MY} is affine with splitting
field L, which we may furthermore assume to be algebraizable to an affine scheme 2 flat, of finite type and
n-smooth over O whose p-adic formal completion is 3, as precedingly. The Hyodo-Kato statement reduces
to the Fil” de Rham statement by the Hyodo-Kato isomorphism (2.1.9). One can check the latter directly, or by

Gysin sequence using the previous proposition.

Let us explain the second approach. Let 7 : PIZ — Z Dbe the relative projective line, j : Alz - PIZ and
i 1 Z > PIZ be the usual excision couple. For any coherent sheaves F on AIZ, the higher direct images
R'j,F = 0 for i > 1; indeed, H'(U N AL F) vanishes for affinoid open U C P{Z, since U N AIZ is then
quasi-Stein and Kiehl’s Cartan’s Theorem B [39, Satz 2.4] (cf. [45, Remark 14]). As a result, Rj,Q%>" is

AL /K
represented by the genuine complex j*Q:fl'/ K There is an exact sequence of complexes of étale sheaves
Z
R o>y
2% o0, Q2T I 40

o>r . o>r
0—>QPIZ/K—>]*Q Z/K

AL /K

where Res is taking the residue along this closed subspace. The de Rham first Chern class of the tautological
bundle is cldR(O(l)) = [dlog ¢], whose representative differential form dlog ¢ induces by wedge product the

connecting morphism in derived category. So ¢ : im*Q'ZZ/;{_l[—l] — Q;,IZ;K is identified with cldR((’)(l)) Ut
4

Now we obtain the following commutative diagram

o>r—1 o>r—1 o>r o>7
QZ>/K (-1 ? QZ>/K (1] GBQZ>/K ? QZ>/K

l: :l(cldR(O(l))Un*)EBn* l,r*

= i o>r—lr_ R7(5) — o>7 — : O°2T
R”*"”*QZ/K [-] —— RK*QPIZ/K  — Rﬂ*‘]*QAIZ/K

where rows are exact triangles, the first two vertical arrows are isomorphisms since 7io = idz and (Proj, ),
whence so is the third. O

4.2.17 - Proposition (Projective bundle formula for (pro)étale cohomology). For r > d, there is a natural
isomorphism d

d

Pt oWy uat) : D RTa(Z.Zy(r - 1) [-2i] = RTa(P2(€),Z(r)).
i=0 i=0
In particular, there are natural isomorphisms

d d
Dty Uy i@ RIa(Z,Qy(r = 0)[-2i] > RTa(P2(£).Qy(1)
i=0 i=0

d d
P ©W) U : @D RTproe(Z.Qy(r = 1)) [=21] = RTpro(Pz(€).Qp(r).
i=0 i=0

Proof. The second isomorphism is the first with p inverted. The third one reduces to the case where Z is affine

by analytic descent, which agrees with the second by quasi-compactness of Z.

For the first isomorphism, it suffices to prove that
d d

(4.2.17.1) Bty uay : @ us -2 > R
i=0 i=0

As these are discrete sheaves, once proven, it can be upgraded to an isomorphism in Z(Zs,Cond.Ab).

The question being éh-local, we may assume that Z = 3, where J is a p-adic formal scheme algebraizable
to an affine scheme 2 flat, of finite type and 57-smooth over Oy, for some finite extension L/K (cf. beginning

of the proof of (4.2.15)). There is a projective bundle formula for mod p” étale cohomology of schemes over K
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(cf. [57, Theorem 6.1.7]), so there is a natural isomorphism
D O uate) : (P " [-2i] = Ry
i=0 i=0

in 2((Z)e, Z/p"). By Huber’s comparison [34, Theorem 3.8.1] and its compatibility between products with
first Chern classes (4.2.13), this implies the desired (4.2.17.1). O

4.2.18 - Proposition (A!-homotopy invariance of integral étale cohomology). Let 7 : Al, — Z be the relative
analytic affine line over Z. Then for any r € N, the pullback induces a natural isomorphism

n*: RUa(Z,Zy(1)) = RUs(AL.Z,(r)).
In particular, the pullback induces a natural isomorphism
7° : RTa(Z.Qy(r) = RTa(A%.Qy(r).

Proof. The second isomorphism reduces to the first, since by definition RI'et(Z,Q,(r)) := RI'et(Z,Zy(7))q,-

To prove the first, we may assume by éh-descent that Z = 3, where 3 is a p-adic formal scheme
algebraizable to an affine scheme 2 flat, of finite type and 5-smooth over Oy, for some finite extension L/K
(cf. beginning of the proof of (4.2.15)). By Huber’s comparison theorem [34, Theorem 3.8.1], we have the natural

base change isomorphism of étale sheaves

cpf%Rn:lgyf{ 5 Rn*,ufl,
where ¢z : (27)i — (Z))e is the natural morphism of sites defined by the analytification functor. But we
have F — Rn’Sx2ls" F by the A!-homotopy invariance of torsion sheaves F on (Z)e (since its base field L is
)21

of characteristic 0)~'. Therefore, we obtain isomorphisms of étale sheaves

= * al =
= b S e RS Bt

Since they are discrete objects on quasi-compact schemes, these isomorphisms upgrade to isomorphisms in
9 (Zg,CondAb). Evaluating them on Z = 3, = ,,@’;;lg, which is an affinoid open subspace of (Z;)*", one gets
the Al-homotopy invariance for the coefficients u;f’,f , from which follows the desired isomorphism by taking

limits over n € N. O

4.2.19 - Remark. Unfortunately, there is no natural isomorphism
7"+ RTprogt (Z.Qp (1)) = RTproet (A%, Qy (1)

since Rrproét(Al ,Qy (7)) #N RT & (Al .Zy(7))q,- It fails even for Z = Spa(K,Ok); indeed, Hgmét(A1 ,Q, () =
0 and Hgmét(A1 ,Q,(1) — QI(AIK) by Colmez-Niziol’s computation [18] and the Hochschild-Serre spectral

sequence, which is huge.

Nevertheless, we have a so-called fundamental motivic spectrum (R prosi(—,Qp(7))), in the sense of [2,

Definition 2.3.2]. Recall that the co-category of "motivic spectra” is defined as

Sppt = Sppi (Shvze: (Smz, Spe,)) := Shvzy (Smz, Spe, ) [(PH) ]

for the Pl-action by the pointed projective line (P',00) on Shvz, (Smz,Spc)?”. A motivic spectra be-

210r by a seemingly stronger result: locally acyclicity of smooth morphisms of schemes.
22Recall that the usual spectra construction inverts the usual action of the unit sphere S! on Spc,, which is the same as telescoping the
action S! ® — since the cyclic action 7 = (123) : (S1)® — (S1)®3 is homotopic to id, as a result (=)[S™!] = Tel (=) := colime1, (—
y P S sle
is equivalent to the telescope construction. However, by contrast, Shvz, (Smz,Spc P)7!] is rather the symmetric telescopin
q P Y P¢, 5 ping
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ing "fundamental” means roughly that it satifies Bass fundamental exact sequence. Of course, for any
V' € Modshy,,, (Smz.Spe) (Prf®), i.e. any co-category presentably tensored over Shvz, (Smgz,Spc) (i.e. pre-
sentable oco-category tensored together with a tensor action of Shvz,(Smgz,Spc) that preserves colimits
in each variable), we can define Sppi(%) by formally inverting the P'-action on ¥,. For example, con-
sider the presentably symmetric monoidal co-category # := Shvy;(RigSmg,Sp) which admits a symmet-
ric monoidal functor from Shvz, (Smz,Spc) via Spc — Sp and base change (left Kan extension) along
Smz — Smp, — RigSmg where the last arrow is given by taking the rigid generic fibre (—),r,ig. For
E = (E;)ren = (Rl proet (= Qyp(7)))ren, we have the following:

(i) The proétale cohomology satisfies Nisnevich descent, even éh-descent, on RigSmg.
(ii) The system E forms naturally a P'-spectrum in ¥, i.e. one can naturally make E € Sppi (7). Indeed,

there is an equivalence
7@ (O1) U™ : Rl proec(X,Qp (1)) ® RTprost (X, Qp (7 — 1)) [=2] = RTprost (P, Q, (1))

provided by the projective bundle formula (4.2.17). So we have ¢{(O(1)) : E,_ > Hom( (P!, ), E).

(iii) It is a fundamental Pl—spectrum, i.e. the Bass boundary map
8" : ES'®6n — EP

identified as
(9;( : Rrproét(Gm,Xva(T))[_l] - Rl—‘proét(P1 ,Q[J(V)),

admits a natural right inverse, namely there exists a natural section sy : Rrproét(Pl)(,Q/,(r)) —
RT o6t (Gmx»Qp (7)) [-1] such that naturally 8y sx ~ id. Indeed, there is a chain of morphisms

. 1 T 1

Sy Rprét(P ,Qp(r)) —: Ulelyﬁderproét(IPU,Q(z(T))
— Ulei%ifd RTe (P, Qy (7))
"D lim RTa(Guu Qp(r) (1)

—) - f—
vedna & mts Q7

i UIEIJILI\lffd Rrproét(Gm,U’ Qp(r)) [_1]
= Rrproét(Gm,U’Qp(r)) [_1]

where s;; is obtained by comparison with algebraic p-adic étale cohomology over the characteristic 0
field K, and satisfies (9;éts?} = id, whence d;;sy = id thus dysx = id. Therefore, E is a fundamental

motivic spectrum.

4.3 Chern classes for vector bundles

4.3.1. Syntomic Chern classes. Let Z € Rig. Using the projective bundle formula (4.2.15) and Chern class

maps

(4.3.11) QBRI (2,0), ™ : 0% — RTyu(Z, D[],

we obtain syntomic Chern classes ¢, (£) for any locally free sheaf & on Z. More precisely, there are unique
classes c:yn(c‘,’) € H? (Z,i) for i =1,...,d +1 such that

syn
d

O Ut (€)= ™M OM)ME™ (1) € Hyt ™ (P2(E).d +1).
i=0

procedure (or the so-called "symmetric spectra” sz(—) construction) and admits a forgetful map ShVZar(SmZ,Spc*)[(Pl)’l] —
Telpi (Shvza, (Smz,Spe,)) = colimpiy_ (Shvza (Smz,Spc,)) forgetting the symmetric group action, which is conservative but not
an equivalence.

75



And we put c:yn(g) =0 for i > d + 1. In other words, c:yn(é’) can be read off from the minimal polynomial of
clsyn(O(l)) in the graded algebra HS%L(PZ(E),O).
Syn

It is easily verified that ¢;”" (€) depends only on the class of £ in the naive’ zeroth K-group of Z

{Etale/Analytic vector bundles over Z}8P

K3 (Z) = . - .
{[&] + [E3] = [&2] | &y is an Oz-extension of & by &}

Hence we obtain the i-th syntomic Chern class maps

" KN(Z) > HYW(Z.4), i€N

extending those in (4.3.11).

4.3.2. Etale Chern classes. Similarly as above, using the projective bundle formula (4.2.17) and Chern class

maps
(4.3.2.1) ¥ :Zy =S RTa(Z,Zy), ¢': 0% — RUyn(Z,Z,(1)[1],
one can define the i-th integral étale Chern class maps

S KPN(Z) - HE(Z,Zy(i)) (), i€N
extending those in (4.3.2.1).

4.3.3 - Remark. Alternatively, we might also define higher Chern classes using the following universal com-
putation: let GL, be the rigid-analytic general linear group of rank 7z over Q, and B.(—) be the simplicial

classifying space construction for monoids; then
}IS;H(B'GLTI,L, .) = I_Is;/n(L, .) [Clv R ] Cn]

for L =K or L = C and n > 1, where ¢; € H% (BsGL, 1,7) is the i-th Chern class of the universal vector

syn

bundle of rank z, and similarly
Hg (BoGLy 1, Zy(e)) = H5 (L, Zp(e))[c1,- . -, n].

Indeed, this follows by standard computation using the respective projective bundle formula and A!-homotopy

invariance, cf. [49, §2.A. BGL(n)].

It would require some work to pull these universal classes back along maps X — B,GL, in order to define
Chern classes. By naturality, these would coincide with our original definition of Chern class maps ¢;(€) for

vector bundles, cf. (4.5.9) for details of this construction.

Before proving compatibility of syntomic and étale Chern classes, we review some compatibility results.

4.3.4. Some compatibility results with comparison maps. Let us be more precise about the (iso)morphisms

(3.1.3.1) used to construct p*;)‘,ﬁh and pSyn -
(i) The isomrophism Fil®(RTar(Z/K) ®F Bar) = Filjyy, (RUint(X/BY;) ®}. Bar) commutes with product
dR

structures and Chern class maps ¢y and ¢;. Indeed, arguing éh-locally, we may assume Z smooth affinoid. In
this case, the isomorphism is constructed via [9, Lemma 5.16, Lemma 5.17, especially formula (5.14)], where all

maps are compatible with product structures and respective Chern class maps ¢y and ¢;.

(ii) The isomorphism RI cis(X) ®;m5 Br =~ Rl"pmét(X,BI) is compatible with product structures. Indeed,
the map is constructed locally for ¥ = Spf(R) framed by (X,A) [9, Notation 4.12] via the Cech-Alexander

23We keep the naive superscript as opposed to Andreychev’s analytic K -groups for adic spaces.
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computation

RUeris(X/A55) = (DzA(R)(0) = DsA(R)(1) = Dxa(R)(2) — -++)
— (DsA(R) = Hom(Z[Tsal. Dra(R)) — Hom(ZI[TE 41 Dsa(R) = -+)
= R['(I'ya, Dy a(R))
~ RT (T3, B/ (Ry A )
= RT((X,)e,Br)

where we followed the proof of [9, Corollary 4.16, Theorem 4.3] and used the map Dy A (R) — Agis(RxAc0) —

B/ (Rs A ). Or samely, we may use Koszul complex computation

chris(%/A:ris = KOSZDX.A(R)((aa)an, (a/l,l')/l eA,ls:‘sd)
- KOSZDZYA(R)((%- = Deoes, (Yai = Daeai<i<a)
~ RT(Tga. Dxa(R))
= RI'(I'zA.Br (R 0))
= RU'((Xy)er, Br)

using [9, Lemma 4.14, Lemma 4.15]. All maps here are compatible with product structures.

(iii) The isomorphism FﬂI._Idg(RFinf(X /B:;R) ®.§R Bar) = RTproe (X, Fil°Byr) is compatible with product struc-

tures. Indeed, the maps is constructed locally via

RTini(X/BR) = Koszp,., (4) ((0u)uewuz)
— Koszp,.,,(4) (Y4 = Duewnz
— Koszg: rim) (45, ) (Ve = Duewnz)
= RT(Dyz, (Bl /Fil") (Ay =)
~ R proee (X, (Bl /Fil"))

where we used the map Dy g, (A4) — (B, /Fil") (4} < ) [9, Formula (5.19)].

(iv) The isomorphisms in (i) and (iii) are compatible. This follows from the commutativity of [9, Proof

Proposition 5.11]
Ds pA(R) ——— Bi(Rzaw)

| |

Dyzm(4) — (B /Fil")(4y )

syn

4.3.5 - Theorem. We have p2iith o ¢ = ¢¥ as morphisms HL(Z,0%) — H};zroét(Z’Ql’(l))'

Proof. Let us elaborate the proof of the statement evaluated at a point, i.e. we will prove that for any line
bundle £ on Zg, we have the identity

PUIB (L)) = (L) € Hot(Z,Qp(D) ().

The proof consists of fastidious reductions to the annulus case where an elementary computation is then done

(4.3.5.17), and can be skipped on first reading. For the condensed statement, the arguments are the same.

4.3.5.1. Let us first reduced to its geometric counterpart, and meanwhile giving another characterisation of the
first Chern class ¢;(£) by using the simplicial classifying stack B,Gy,. For this, let us denote by G,, = G, x the
rigid-analytic torus over K (i.e. analytification of the algebraic torus over K, to be distinguished from the unit
circle torus TIK = Spa(K<Ti1> ,0K<Ti1>)). The étale line bundle £ determines a morphism fz : X — B.Gy,
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(up to translation by G,,). Let F be a big étale sheaf over Spec K, and denote
RI'y(B.Gp, F) = liin R (G, F).

By the spectral sequence Ell] = Hé{(G;li,f) - H;:j (BoeGpi, F), we see that

(i) We have Hélt(B.Gm,Ox) ~ HY(G,,0*) with a canonical element the coordinate function T €
H°(G,,,0); similarly in the geometric setup, we have Hélt(B.Gm’C,(’)X) ~ H°(Gc,0*) with a canon-
ical element the coordinate function 7 € H°(G,,c,0>).

(ii) We have

(e"v")

(4.35.2) H(BuGm.Zy (1) = Hy (G Zy(1) = HY(K.Zy(1) & Hiy(Gc. Zy(1))

where two component maps are induced by base change respectively along the unit section e :
Spa(K,Ok) — Gy and the projection from the geometric rigid-analytic torus v : Gpc — Gy, Simi-
larly, we have

HZ(BeGnc, Zy(1) = Hy (G, Zy(1)).

Let us denote by « be the canonical pro-(finite étale) Z,(1)-torsor

Guc = lim G,¢ — Guc;
Tw—T?

then [«] is the canonical topological generator of Hy(Gnc,Z,(1)) = Z,. By an explicit calculation, we
have
6'(T) = [x] € H (G, Zy (1)
for T € H (G c,0X).
(iii) Hg,n (BeG,Zy(1)) = Hslyn(G,,,,Z[,(l)) - HPIIK(G,,,) with a canonical element dlog ¢.

The morphism f; is naturally chosen (up to translation by G,) so that f/: : H’(Gy,0%) = HL(B.G, 0%) —
H}(X,0%) is such that [T] — [L£]. By naturality of ci?, we have cl?(ﬂ) = c;(fZ(T)) = fﬁ*(cl?(T)) for

? € {syn,ét}. Also, p‘;‘;irfh commutes with £, so that p‘;;;‘h(clsyn(ﬁ)) = pg‘;ghfz(clsyn(T)) = fﬁ*p:;;gh(clsyn(T));
therefore, we are reduced to showing that
(4.3.5.3) PUIR(YN(T)) = f(T) € HY(Gn.Qy(1)).

Similarly as the direct sum decomposition (4.3.5.2), we have
(e"v")

(4354) H;?roét(BOGm’Qp(l)) = H;roét(Gm’QP(l)) i leroét(K’QI’(l)) ® Ho (&’ngoét(Gm»C’QP(l)))'

Therefore, (4.3.5.3) is further reduced to the identities

(4.3.5.5) ¢ pin (67" (T) = ¢ f(T) € Hypoe (K, Qy (1)
(4.3.5.6) VP (™(T)) = vi e (T) € H* (G, Hyyoit (G Qp (1))).

4.3.5.7. For (4.3.5.5), we notice that both sides are zero: on the one hand, on the other hand, by naturality

of p;',gh and clsyn, they commutes with ¢*, so we have e*pg‘;irfh(clsyn(T)) = p';‘)‘,irfh(clé‘(e*T)) and T =1 €

H'(K,0*); similarly, by naturality of ¢!, we obtain ¢*¢[(T) = ¢f'(¢*T) = 0.

4.3.5.8. Now, we are left with (4.3.5.6), which is the geometric counterpart of our theorem. Again by naturality,
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since v*T =T, (4.3.5.6) amounts to the equality
(4.3.5.9) P (6" (1)) = of'(T) € H* (G, Hprott (G, Qy(1))).

We may discard taking Galois invariants here as it will not help prove the identity.

The rigid-analytic torus G, ¢ has a non quasi-compact semistable formal model over Ok, and it also
has a projective semistable model by gluing two copies of Spf Og(T") (allowing this time horizontal divisors
{T = 0}) along Spf O (T*'). According to [16, Corollary 1.10] and [13, 4.3.2], we have computations

(i

(ii

) Higx (Guc) = F - (1),

) Hgmét(Gm,CvBlog)N:O — (HIEIK(Gm,C) ®1.;~ Blog)N:0 =B- ClHK(T)a
(iii) leroét(Gm,C’Blog)Lpzl)’Nzo — (HPIIK(Gm,C) ®;~ Blog)wzo’Nzo = Qﬂ . ClHK(T)a
) H

(iv iLf(G,,L,C/B:;R) = H;R(GM/K) ®% Blx = Br - cldR(T), where

() = [dlog T]

by construction of (compatible) de Rham Chern class maps cli“f and c{iR (4.17).

(v) There is a short exact sequence [8, Formula (6.7)]
0 — Hip(Gn/K) ®F Biy = Hyoe (G, Bl) = Qg x(Gn)=" &% C(-1) = 0

by taking the first cohomology group of RIproet(Gmc,Bip) = Fil’(RT4r (G /K) ®% Bar) [8, Theorem
6.5].

(vi) There is a natural map of short exact sequences

0 —> Hélt(Gm,C’Qﬂ(l)) e Q[I : [K] —> 0

|
l \Lcan 1p’
\‘/

0 — O(Guc)/Q) — Hlroe(Gunc. Q) —2— Q- f(T) — 0.

geom,—1

Here p’ is supposed to behave like piy,

(vii) Consider the composition of natural maps

ik Qp - 6 (T) = (Hyg (Guc) ®F Biog) V="
- H;mét(Gm,C’Blog)
(4.3.5.10) — H), (G, BY) = H'Fil'(RTur (G /K) ®F Bar)
> Hiy(Gn/K) ®F Bjy
= Bl - ¢®(T).
It matches clHK(T ) with cldR(T ) = [dlog T'] by its compatibility with the geometric Hyodo-Kato mor-

phism [9, Theorem 5.3 (ii)], hence it is injective. Moreover, the composition (o’ coincides with the

composition map

(4.3.5.11) P Hy(Gnc,Qp(1) = Hy, oo (G Bip)

induced by Q,(1) — B} sending & = ({y), + log[e].
4.3.5.12. We claim that

(4.3.5.13) p' (k) = ¢f™(T) € (Hig (Gmc) ®F Biog) """ = Q, - ¢'(T).
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geom

Admitting this, by construction of pg, (3.1.3) and compatibility between differntial symbols, we have
ﬁpf;ﬁm(cfynT) = HK(T), so B ( &(Ty - pf;sm fyn(T))) 0, or equivalently

§(T) = (7)) = p&a" (6" (1)) € ker(Hyre (G0 Qp(1) = Q) = O(Gun0) /Qy-

we need to show that the difference function 6(7’) = 0. For this, consider the squaring morphism o := (-)? :

Gnc — Guc over C given by T 2 4 T. On the one hand, we have
o (¢ (1) = P (& (1))) = ' (T?) = pia™ (6" (T%)) = 2((T) = pSa™ (7" (T))) = 25(T)
by naturality of p§," and cl? ; on the other hand, by naturality of O(G.¢)/Q,,
o ((T) = PS5 (&7 (1))) = 76(T) = 6(T%).
Therefore, 26(T") = 6(T'%) whence 6(T) =0
4.3.5.14. It now remains to show (4.3.5.13). The injectivity of ¢ (4.3.5.10) reduces it to
(4.3.5.15) p"" (k) = [dlog T'] € Hy, oo (Gmc,Big) « Hyp(Gu/K) ®F Bl

where we used ¢, p’ = p” (4.3.5.11) and ¢y (¢F(T)) = cldR(T) = [dlog T'] (see the point (x) above).

Before the proof, we introduce certain perfectoid covering of G,, for our computation. We denote by
X, = Spa(K(p"T,p"T) ,Ox(p"T.p"T~")) = {|p"| < IT| < [p~"|} € Gy the arithmetic annuli over K and
by X, their base change to C. We do not use the pro-(finite étale) Z,(1)-torsor « : ém,C — Gy c. Instead,
consider the closed embeddings

Xy — Y, = Spa(K(Uy,, Vy) ,Ox Uy, V)

given by U, — p"T,V, — [)”Tﬁl. Consider )?n,c the pullback along this closed embedding of the canonical
Z[,(l)Z -torsor affinoid perfectoid cover

Yuc —Spa(C< yir yir > OC<U,1/P°°,V,,‘//’°°>) oY,

Then we have compatible strict inclusions of perfectoid space Xn,C ct X;n+l,C induced by pU, « Uy, pV, —
V,s1. Their union X is the canonical Z[,(l)z—torsor perfectoid cover of Gy, ¢, with a Stein affinoid perfectoid
covering by X, ¢. The system {H roet(fnc, dR)}”EN is Mittag-Leffer [14, Lemma 3.10], and vanishes if i > 0
[50, Theorem 6.5], thus H roet(G’”C’ w®) =B R(Gm ¢) if i = 0 and vanishes if i > 0. Then the Hochschild-

Serre spectral sequence and the lim'-sequence give

Hyoet (Gunc Big) = H'(Zy(1). B (Xc)) = lim H'(Z (1), Bl (Xonc)).
Now the proof reduces to identifying
(4.3.5.16) p"(K)x,, = [dlog T] € HI(ZI,_(I),BER(fm,C)).

4.3.5.17. Let us prove (4.3.5.16). It is direit to check that p”(k)|x,, € H;mét(X,,’C,BgR) ~
HI(ZP(I)Q,BER(X,L’C)) ~ H! Hom((Zp(l)Q)X',BER(GM,C)) (by Hochschild-Serre spectral sequence for the first

isomorphism and (1.3.4) for the second) is represented by the continuous cocycle

(4.3.5.18) (Yus o) > loglyu] —log[ys].
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Now we will go through the construction of the comparison map RT'qr(X/K) ®% Bl; — R proer(Xc,BlR)
[9, Proof of Theorem 5.9] (see the point (iii) above) in order to identify the image of [dlog7] in
leroét(Xﬂ,C’BgR) ~ HI(Z[, (I)Q,BER()?,,,C)). Let D, := Dy, (Y, ) be the ring of functions of the B}, -envelope
of X,¢ in Y, pr as in [9, Lemma 5.16] (cf. [31, §2.2]). Then RI'4r(X,/K) ®f By = Koszp,(0y,0,) where
0y = u%,[)v = v(f—y are log derivations, and the class [dlog '] = [dlog(p"T)] = —[dlog(p"T!)] corresponds

to

[(1,-1)] € H'Koszp, (8,,0,).

The map Koszp, (8,,0,) — Koszp, (v, — 1,7, —1) of the point (iii) is induced by ([10, Proposition 5.34])

(D, -2 D,)

b

(D, £ D,)

where & € Zy(1) is a chosen generator, £ == 3,5, wﬁi_l, and the u-component element vy, € Z,(1),

alias of &, acts on the B;R—algebra D, by y(U,) = [€]Uy; similarly for the variable v part. Under this map, the
class [dlog T'] is mapped to

[(log[e]. - log[e])] € H'Koszp, (yue = L¥os = 1).
Finally, using the map D, — BdR(X:n,C)a U, — [([)"T)b], V, — [(p"T_l)b], we obtain the class
(4.3.5.19) [(log[e],—log[&])] € HlKosszR( %) Yue = LYoz = D).
To conclude, we claim that (4.3.5.19) recovers the formula (4.3.5.18) for p”(x)|x,, under the identification

HlKosngR(imc)(yu ~ Ly, - 1) = HY(Z,()%, B} (X, 0)) = H' Hom((z[,(1)2)X°,B5R(ém,c)), which we sum-

marised in the lemma 1.3.8.

O

4.3.6 - Theorem. The syntomic and étale Chern classes are compatible, i.e. for Z € Rigy and i € N, the following
diagram commutes

H? (Z,i)

syn
on
7

K(x)laive ( X) p:;:i':h

ét
x

H(Z,Qy(1))

Proof. In view of projective bundle formulae defining general Chern classes, it suffices to show that the com-
parison map p*s‘;,i‘fh : Rl (Z,i) — RIpost(Z,Q, (7)) commutes with product structures, ¢y on the zeroth
cohomology and ¢ on the first cohomology (i.e. ¢;(£) for line bundles £). By construction of p¥ith (3.1.3), it

syn

suffices to prove the corresponding statement for the composition

arith

ps n
RUyn(Z,i) = RUprost(Z,Qp(r)) = RTproec(X,Qp(1))
>~ 1 —pt i r
- [Rrpmét(x,Blog[ ;])H’ N=0' 5 RTprost (X, Bar/t" Bl

But it is clear that the latter preserves product structures by (4.2.1), commutes with ¢y by construction, and
commutes with ¢ for line bundles by (4.3.5). |
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4.4 Image of étale regulators

4.4.1. Etale regulators. For Z € Rigy and i € N, let et K(‘)lai"e(Z) - Ho(ﬁ,Hézti(Zc,Z[,(i))) be the
map induced by the i-th étale Chern class map and the Hochschild-Serre spectral sequence boundary map
0 H2(Z¢,Zy(i)) > H Yk, HY (Z¢.Zy(i))). We define

(4.4.11) K}*e(Z) = ker(K*™(Z) R H Yk, Hi (Zc,Zy(i))))
and the i-th étale regulator map as the map
(4.41.2) rét Kgve(Z) — HNYx Hy' " (Ze,Zy(1)))
induced from cftl K (Z), and the Hochschild-Serre spectral sequence map
o1 Hi'(Zg Zy(i))o =ker 60 — H'(Yx. Hy' " (Z¢. Zy(1))).
4.4.2 - Theorem. Let Z € Rigy be proper. The étale regulator map r{* factors through the subgroup

H (k. Hyool (Z¢.Qy (1)) € H' (G, Hovet (Z.Qp (0))).

Proof. By (4.3.6) and (3.2.17), we have the following commutative diagram

svn

Hg(Z,1) D HY (Gx H (Zc.Qyp(1)))

syn

K(;laive (Z) P:;‘,ih ~|can

ot
x
do

HiH(Z,Qy(i)) —— H (k. Hi (Ze,Qy(1))).

Hence the image of Kgai"e(Z)o under c " is contained in H2. (Z, 1) = ker(6gopith) = ker (')f)yn. Consequently,

syn syn

again by (3.2.17), we obtain the following commutative diagram

syn

Hg (Z.i)o S H(x, H3' ™ (Ze,Qy (1))

K(l)lalve (Z)O P:;;‘;:h can

ét
X

HZ(Z.Q,(i)) — HY (Y Hi ™ (Zc,Qy (1))

which shows the desired factorisation. O

4.5 Higher Chern class maps and étale regulators

4.5.1. Unstable A'-homotopy theory of rigid spaces. Let us first recall the related materials from [22, Section
3]. Let (R,R*) be a uniform Huber pair with associated rigid space § = Spa(R,R"). Let C be a presentable
category of coefficients, e.g. C = pro(Spc), C = pro8"(Spc), C = Cond™™(Spc) be the category of light
condensed anima, or C = Cond,(Spc) be the category of k-condensed anima, where « is some uncountable
strong limit cardinal. Here, proligh‘(—) denote the full subcategory of pro(—) consisting of those pro-objects
that can be indexed by N.

82



We define the unstable rigid motivic homotopy category with coefficeints in C as the reflective subcategory
RigH(S,C) = Shvf\\ﬁls(RigSmS,C) C Shvyis(RigSmg,C) € PShv(RigSmyg,C)

spanned by Al invariant Nisnevich sheaves, with left adjoint the motivic localisation functor Lmet := Lmotc-

If C is also cocomplete, then the motivic localisation can be described by the colimit of functors
Lot = colim, (LyisLa1)°"%*, and the Al-localisation functor Ly : PShv(RigSmg,C) — PShVAl(S,C) -
PShv(RigSmg,C) can be described by the formula [22, Lemma 3.6]

(LatF)(X) = colimpep F(X X A®)

where the analytic n-simplex A" := {}}"_ ) X; = 1} ¢ A% is the analytification of its algebraic analogue.

If C is moreover stable (for example the co-category of spectra Sp), then we define the effective stable
homotopy category with coefficients in C as

RigSHT(S,C) := RigH(S,C).

4.5.2 - Example. According to previous results, for r € N, the syntomic cohomology RIy,(—,7) and the
integral étale cohomology RIs:(—,Z,(r)) define objects of RigH(S,Cond(Sp)) for §' € RigSmg. Here, we
have used canonical localisation embeddings

Z(Modg ) = Z(CondAb) = ShvPP (%061, Z(Ab)) < Cond(Sp)
which preserves limits to view solid cohomology theories as valued in Cond(Sp).

Another source of examples of objects in RigH(S,Cond" 8" (Spc)) come from the analytic K-theory.

4.5.3. Analytic K-theory. Recall that the connective analytic K-theory of a rigid space Z € Rigy is defined as
(4.5.3.]) k*™(Z) :="lim"; K50 (Z{Az)) € pro™®™(Sp);

here, we define
K>0(Z(Ar)) = colimpo K>0(Z(AS, ),

where K> ((—) on the right is the usual connective algebraic K-theory a la Thomason-Trobaugh [56, Chapter IV,

Remark 8.5.5]25, which is equivalent to the connective cover of the non-connective algebraic K-theory K(-).

Doing the same thing for its connected cover K>;°, we define
(4.5.3.2) k(Z) = "lim"; K>1(Z{Ans)) € pros"(Sp).

Notice that £27(Z) is different in general from the connected cover 7>1£*(Z), but we still have a weak fibre
sequence27 in prolight(Sp) [37, Lemma 6.4] [22, Formula (5.3.1)]

(4.5.3.3) F(Z) — k*(Z) — "lim"; Ko (Z(Ag)).

24

we need to take this colimit since neither Nisnevich sheafification nor Al-localisation of presheaves preserve the property of the other
one.

25The original reference for Thomason-Trobaugh K-theory spectrum is [54, Definition 3.1J; it is a connective spectrum. One can also
find a review and further discussion in an co-categorical account in |7, §7]. Furthermore, one can also refer to these references for the
non-connective algebraic K-spectrum a la Bass-Thomason-Trobaugh via Bass construction [54, Definition 6.4] [56, Chapter IV, Definition
10.4] [7, Definition 9.6]; its connective cover recovers the above mentioned connective K-theory spectrum.

26The notation for the connected cover 751K in [37] is KCL while it is denoted by K5 in [22]. We adopted the latter.

27Recall that [37, 22] there is a functor ¢* : pro(Sp) — pro(Sp*),"lim"7X; > "lim "Nx7T<,X;. A morphism in pro(Sp) is said to be a
weak equivalence if it is an equivalence after applying (*, a weak fibre sequence is a sequence which becomes a fibre sequence after applying

A
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The last term is isomorphic to Ko(O(Z)) for Z € RigSmg under the condition (T ), or more specifically for
Z = Spa(4,4°%) € RigSmg with A4 (regular) satisfying (f4) [37, Corollary 5.15, Lemma 6.4]. It gives rise to
a fibre sequence in Cond"™"(Sp) after applying the limit preserving functor Y™ (

then that y!8hk2(Z) € Condhght(SpZ_l)QS. Finally, the non-connective analytic K-theory on Rigy is defined
29
a

1.2.1, vi, vii), and we see

objectwisely using the analytic Bass construction”” as

(4.5.3.4) K™ = (k%)%

it is Al-homotopy invariant by construction and satisfies Nisnevich descent [38, Theorem 2.10] [22, §5.1]; and
it is homotopically bounded below, or more precisely K**(Z) € pro8"(Sps _4imz-1) for Z € Rigg, by [38,
Theorem 2.4], since any affinoid Tate algebra 4 over K has a Noetherian ring of definition of dimension
dim4 +1.

We also have the KaroubiVillamayor analogue of £**
KV* :="lim",BGL(O(- x A,)) € pro(Spc,).

It actually belongs to pro™(Spc?) where Spc? denotes the co-category of pointed connected spaces.

4.5.4. Let A be a Tate ring, i.e. a Huber ring with a topologically nilpotent unit. We consider the following
condition on 4 [37, §3.2]

There exists a Noetherian ring of definition 49 C 4 and a desingularisation, i.e. a proper morphism

(t4)

of schemes p : X — Spec 4y with X regular and such that p is an isomorphism over Spec 4.

This condition makes

(4.5.4.1) K™(4) = ((2DF(4) — (k)7 (4)

>1

an weak equivalence in pro'8"(Sp) and also induces weak equivalences in pro(Sp)
(4.54.2) mo(K™(4)) ~ Ko(A4), T120(K*™(4)) = k*(4), KV*(4) =~ Q%121(k*(4)) = Q¥11(K*(4))

by main results of [37, Corollary 6.20 and Lemma 7.5].

Consider also the following condition on some base Tate ring R:
(k) Every regular and topologically finite type K-algebra 4 satisfies (7 4).

4.5.5 - Remark. Although y'8" is only left t-exact [22, Lemma A.19], we claim that the fundamental groups
and truncations in (4.5.4.2) can either be taken in prolight(Sp) or in Condlight(Sp), using the following lemma:

4551 -Lemma. Let X ="lim";enX € pro“ght(Sp).

(i) Let n € Z such that m,X ="lim";cnm, X; € pro&(Ab) is a Mittag-Leffler system. Then we have canonical
equivalences
Y (120 X) D Toa (XY, Y (12 1 X) S oy (X,

(ii) If moreover mpnX = "lim";enTpnX; € pro“ght(.Ab) is a Mittag-Leffler system. Then we have canonical

equivalences

Y (EanX) 5 (X)), Y (1 X) < T (XD, Y (1, X) = ().

A28Alth0ugh k" e proligh‘(szo), it is a priori not clear whether Ylght (gan (7)) e Condlight(szo) or not, because of the fact that
ylight is in general only left t-exact, but not right t-exact. Nevertheless, as the projective system is N-indexed, we have Y™ (Z) e
Condhg}“(SpZ,l) and, by the Milnor sequence, that a_1(ylghtgan (7)) ~ lim; KO(Z<A"]' ))

298ee [37, §6.1] or [22, §5.3] for details of the analytic Bass construction.
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light

Proof. (i) Consider the (weak) fibre sequence 75, X — X — 7<,_1X in pro'8®(Sp). Applying 8", we obtain

a fibre sequence
Y (12, X) — YEN(X) - Y (1,1 X)

in Condhght(Sp). As '8t js left t-exact, the third term 8" (7., 1X) lies in Condlight(Sp)Sn_l. As for the first
term y'8"(75,X), @ priori it lies in Cond™"(Sps,_1) as the projective system is N-indexed, and by Milnor
sequence, we have Ta_1 (Y8 (15, X)) = limil 7o X,. Now the Mittag-Leffler condition implies that this last lim!

vanishes, whence Y8 (7, X) € Condlight(Sp)Zn ~ Condlight(SpZ,,); in particular the above fibre sequence

gives the truncations 7, and 7<,_; of yi&ht X,

(ii) Consider this time the fibre sequence
Y (T2 X) = y(X) — Y (g, X)
in Cond"8"(Sp). By (i) applied to 7 + 1, we obtain equivalences
Y (T X) = T (FX), (1 X) S T (),
Finally, consider the fibre sequence
P X) = Y (120 X) = ¢ (101 X)

in Condhght(Sp). The Mittag-Leffler property of 7, X again implies that y'"8"(x,X) € Cond(Sp)?[z], so we
get
Y (M X) = Ty ¥ (1 X) & T2aTea(FHX) = 1, ().

Let us deduce the above claim from the lemma. Let us check the conditions:

* Under the regularity and (74) condition, we have 7o (K**(A4)) = "lim"; Ko (4(A;)) = Ko(A); in particu-
lar, this tower is Mittag-Leffler. So the condition (i) of the above lemma is verified for n = 0.

¢ Next, before continuing, recall that for any affinoid Tate algebra 4 over K (or more generally a complete
normed ring, not necessarily commutative nor unital), we have m(KV*(4)) =~ "lim",GL(4)/GL(4),
in pro(.Ab) [37, Lemma 7.3], where GL(4), € GL(4) is the subgroup generated by matrices g such that
lim, 100 “(g - 1)”||p” = 0, cf. loc. cit, which is a normal subgroup; so GL(4), decreases as p tends
to +co. In particular, the tower m(KV?*(4)) is a Mittag-Leffler system and has a countable cofinal

subsystem, hence the condition (ii) of the lemma is also verified for z = 0.

Now we deduce from the lemma the canonical natural equivalences
Too (YK (4)) = I EN(4), Y 1y (K2 (4))) = 11 (YK (4))), ¥ (o (K™ (A))) = 7m0 (K™ (4)).

Our claim then follows.

4.5.6 - Example. If the condition () holds, then by representability of analytic K-theory [22, Theorem 5.7,

there is a canonical equivalence
(4.5.6.1) Linot(Z X BGL) = Q%750 Linotk®™ — Q%750 Lot (k)5 & QX175 o K230

in the category RigH(K. ,Condlight(Spc)); in fact, there is already an equivalence Li1(Z x BGL) =~ ergroeK an
on AffdSmg under this assumption, whence an equivalence LyisLa1(Z X BGL) =~ Q%7150 K*" by Nisnevich

30Here, by abuse of notation, we denoted by the same notation K" the image of K" via the small limits preserving and conservative
functor !i8M : prolight (Sp*) — Cond™¥™ (Sp), cf. [?, Lemma A.8]dahlhausenyaylali2024AlhtpyRig
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descent of K" [22, Lemma 5.6]. Its proof will be recalled with more details in the proof of the following (4.6.3),
though treated there with respect to the étale topology. Without assumption (7 ), there are still natural maps

(4.5.6.1), but they are not necessarily equivalences.

This example motivates the following definition.

4.5.7. Connective motivic analytic K-theory. Let BGL be the analytic sheafification of the presheaf
RigSm;{P — Cond(Spc),Z — BGL(Oz(Z)). Alternatively, BGL = LNisl_ir_>n |B.f’GLn

Iytification of its algebraic analogue. We define the connective motivic analytic K-theory over K as the object

; this is also the ana-

(4.5.7.]) k20t = [ ot(Z x BGL) € RigH(K,Cond(Spc)).

For Z € RigSmg, we define its non-negative motivic K-groups as the homotopy groups of k**™°(Z) €
Cond(Sp)
k;n’mot(Z) = 7;(k*™™°(Z)) € CondAb.

Essentially by construction, it is clear that there is a natural map
(4.5.7.2) K3 (Z) — kMU Z) ().

4.5.8. Enriched Yoneda lemma. Putting ourselves first into a general setting, let £ € CAlg(Pr:®) be a
presentably symmetric monoidal presentable co-category (i.e. a symmetric monoidal co-category which is
presentable and such that the tensor product preserves colimits in each factor), with canonical unit ig :
Spc — £. On the one hand, for any F,G € Fun(RigSm?,E), there is a £-enriched internal mapping object
Hom (F,G) € & such that Hom¢ (F,-) : Fun(C°,&) — & is right adjoint to pointwise —®F : £ — Fun(C?,£).
On the other hand, we denote ¥, = ig (Hom¢(—,¢)) € Fun(C,€) the &-enriched Yoneda embedding of ¢ € C,
which is the usual Yoneda embedding valued in Spc composed with ig. Our key co-categorical claim will be
131

the &-enriched Yoneda lemma [22, Lemma B.3], namely there is a natural” equivalence F(c) ~ Hom,(Y;,F) in

€ for any F € Fun(C,¢).

Specialised in our situation where C = RigSmg and £ = Condlight(Sp), the unit functor Spc —

const

Cond"™"(Sp) factoring as Spc =R Sp — Cond(Sp) in Pr’®, the enriched Yoneda lemma implies that
for F € Fun(RigSmgp,Cond(Sp)), there is a natural equivalence

(4.5.8.1) Homcondligh‘(sp) (Lot Z°Y7, F) = Homcondlight(gp) (E%Yz,F) = F(Z)

in Cond™" (Sp). Indeed, the first equivalence holds as the functor Ly is compatible with the Cond™™ (Sp)-
module structure by base change of the motivic localisation functor [22, Remark 4.1]; the second follows from

the enriched Yoneda lemma.

4.5.9. Higher syntomic and étale Chern class maps. To explain the idea, let us first take some F €
RigH(K,Cond(Sp)). The evaluation on Z € RigSmg (i.e. pullback along the embedding of co-categories
({Z},idz) = C) induces a map

Homy,,q(5p) (Emot 27K, F) — Home g sp) (Lmot 27K (Z), F(2))
- HO_mC(md(sp)(Zookan’mm(z),]:(z))
in Cond(Sp). Let i € Z. Any element

¢ € my Home,\y(sp) (Lino ZE™, F) (+)

311t is natural in objects of C for any given C by Hinich’s work [33], but the naturality in C of this transformation have only been proven
later by Shay Ben-Moshe in [5].
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determines a class in 7o Homeong(sp) (T kanmot 51 7y whence morphisms
¢ (ETENNZ)) > o i(F(Z)), jeN

in CondAb. As 71;(X°k*™°(Z)) ~ lim . TjsmZ" kN Z), we extract from above morphisms (by abuse
—>m—>+00
of notation)

¢ k;\n,mot(Z) - n;_(F(Z)), jeN

in CondAb. Then, let us give an expression of Hom,, nd(S )(LmotZ""k"“"m"t F). As Ly and X% commute

with colimits, we can write LyoZ® k> =[], hm |Lmot2 YB.GL,, Therefore, we can compute

Hom 4 sp) (Lmo ZF™™ F) = Home, sy (| ] 1im [ Zimo
Z

n

(4.5.9.1) = ]_[ limlim Homy sy (Lot =% Ygpze, F)

n

o . . xXe\ . .
~ D{lnhzn F(GLX®) = Dlln}'(B.GLn)

where the last equivalence is due to the enriched Yoneda lemma (4.5.8.1).

We are now ready to construct rigid-analytic syntomic and étale Class maps. By computation of (4.3.3),

there are universal syntomic Chern classes
C™™ = (ci)nez € nlimey’n(B.GL,,,i)(*), ieN
4
for 7 = RI'yy(Z,i) and universal étale Chern classes

C¥ = (¢i)nez € ]_[anZ’(B GL,.Zy(i))(*),, i€N
Z

for 7 = RT¢(Z,Z,(i)). Applying the above construction to these classes, one obtains natural higher syntomic

Chern class maps

4.5.9.2 k(2 — HY(z,i), i,jeN
y J

and natural higher étale Chern class maps

(4.5.9.3) ol L EMNZ) - Hy TN(Z,2,(1), 1,7 €N

in CondAb. Since both this construction and that of (4.3.1) and (4.3.2) rely on the projective bundle formula,
by checking various compatibilities, one verifies that these Chern class maps are compatible through the

comparison map (4.5.7.2).

4.510. Higher étale regulators. For Z € RigSmg and i,j € N, let & kan’mOt(Z) —

L.y
H° (Yk. H, HY ](ZC,Z[,( 1)) be the map 1nduced by the higher étale Chern class map cetA and the Hochschild-
Serre spectral sequence boundary map o : ](ZC,Z/,(z)) — H (Yk, H; 2’ j(Z(; Zp(l))) We define
(4.5.10.1) EM(Z)g = ker (K™ (Z) = S HO Gk, HY ™ (Ze,Zy (1))

and the higher étale regulator map

(4.510.2) G RN (Z)) — HY g Hy 7 (Ze. 2y (1))
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induced from cftl| gmmot( 7y, and the Hochschild-Serre spectral sequence map
K
611 HY 7 (Z6,Zy(i))o = ker 6o — H (G, He' '™ (Ze, 2y (1))).

4511 - Theorem. Let Z € RigSmg be proper. The étale regulator map rf; (4.5.70.2) factors through the condensed
subgroup

HY (G, HY 7 (Z6,Q,(1))) € H @, HY' ™ (Ze,Qp(i))).

Proof. By (4.3.6) and (3.2.17), we have the following commutative diagram

HET(Z,4) — s B Y (26.Q,(1)))

syn

k;n,mot (Z) p:;l‘:h ~ | can

HY(Z2,Q,(1)) =2 B Gx, He' ™ (Ze,Q,(1))).

Hence the image of £7™ ™o 7)o under ¢; /n is contained in Hsi,l;j(Z i) := ker(8y o pith) = ker ;" Conse-

syn

quently, again by (3.2. 17) we obtain the following commutative diagram

HE (Za)y —" s B (G B2 (26.Q,(1)))

syn

k?“’mOt(Z)o plih can

~,

HY(Z,Q,(1))0 =25 H\@x, Ho' ™ (Z¢,Q, (1))

which shows the desired factorisation. O

4.6 Towards étale analytic K-theory

The natural map (4.5.6.1) is only valid under the condition (7 x), which has not been proven to be true yet.

However, in the scope of an étale local theory, (7 ) is true by Temkin’s altered local uniformisation theorem
[53, Corollary 3.3.2], so that we may obtain an unconditional representability of the étale analytic K-theory by

going through the arguments in [22, §5], as we shall explain below in this subsection.

4.6.1. Etale analytic K-theory. Recall that for a Tate ring 4, there is a natural map in pro’ht(Sp)
(4.6.L1) K*™(4) = ()P (4) - (kP (4),

light

and we view it by application "™ as a map in Condlight(Sp). If moreover A4 is regular and satisfies (7 4), then

(4.6.1.1) becomes an equivalence [37, Lemma 6.18], and we have equivalences [37, Corollary 6.20]

E(A) > 150(F™)B(4) & 150K (4).

Let the étale analytic K-theory over K be the étale sheaf

K = L4 K* € Shve (RigSmg,Cond ™™ (Sp))
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which is the étale sheafification of the presheaf K** € PShv(RigSmg,Cond ™" (Sp)). It might not be Al-
homotopy invariant due to non-quasi-compactness of Al. We could also consider further eh-sheafification
Kenéh .= . K0 ¢ Shvg, (Rig K,Condlight(Sp)); but we will not pursue this in the following.

4.6.2. For Spa(4,A*) € Affdg, there are natural maps
(4.6.2.]) Z(A) X BGL(4) —» QVK5¢(4) = Q%150 (k*)2(4) — Q1.0 K*(4)

by construction. Moreover, since (k*%)® and K*" are Al-homotopy invariant, so are Q“’Prergrg(ka“)B and
Qm’Prerng"m. Therefore, we obtain maps in PShv(RigSmg,Cond(Sp))

4.6.2.2 Lai(Z x BGL) — QPregPre(ganyB  qyeopre Pre gran
Al >0 >0

4.6.3 - Theorem (Representability of étale analytic K-theory). The map (4.6.2.2) induces equivalences afier étale
sheafification, that is, we have equivalences in Shvg (RigSmyg,Cond 8 (Spc))

LeaLai(Z x BGL) 5 Q%150 Le (k™) & QX150 Ly K™ = Q%75 K™,

Proof. Recall that sheafification commutes with Q% and 7-9, namely we have equivalence of functors
LTQ""’PreTgrOe 5 Q%150L; for any topology 7. So we are reduced to showing that the maps (4.6.2.2) becomes

equivalences on certain basis of RigSmg; or on stalks (i.e. on strict henselian local rings).

By Temkin’s altered local uniformisation theorem [53, Corollary 3.3.2], any Z € RigSmg is étale locally
of the form Spa(4,A4°) with Spf A° being a semistable formal scheme over Oy, for some finite extension L/K,
hence 4 is regular and satisifies (1 4). The second equivalence of (4.6.2.2) is true for such Spa(4,4°) € RigSmg
by (4.5.4.1), hence after étale sheafification we obtain Lét(/ca“)B bl Ly K*. So we are left to prove the first

equivalence.

We now proceed exactly as in the proof of [22, Theorem 5.7]. Using the fibre sequence "15; — 759 — 7"
in Condlight(Sp), which stays a fibre sequence in Condhght(Spc) after applying Q%, it is enough to examine
respectively the connected covers and in degree zero, namely the maps in PShv(RigSmg,Cond(Spc)) resp.
in PShv(RigSmg,CondAb)

co,pre__Pre /7 an\ B co,pre _Pre yran pre -y an\B pre g-an
BGL — Q%Prl (k™) « Q¥Pr [ K™, resp. Z — ny (K™)” « my K*".

In degree zero, we have Kj"(4’) ~ K((A’) for strict henselian local rings A" by Temkin’s result and
(4.5.4.2), and K((A4’) =~ Z for any local rings A’, so we obtain equivalences LgZ 5 LétKg“. Noticing that
Z > LpZ, we have shown that Ly LoZ — Le Q¥ K™ in Shve(RigSmg,Cond ™™ (Spe)).

On connected covers, for Spa(4,4°) € RigSmg with A regular and satisfying (7 4), we compute as follows:
(La1BGL)(Spa(4,4°)) = colim[,]ear BGL(Spa(4,4°)(A"))

colim[,jca» Hom(colim,, Spa(4,4°)(Az) ,BGL)
=~ colim[,]eacr lim Hom(Spa(A,A°)<Az> ,BGL)
P

1

=~ lim colim,]eacp Hom(Spa(A,A°)<Az> ,BGL) by (4.6.4) below
~ lim BGL(4(A,))

= KpVan (4) cf. [37, Definition 7.1]
~ Qm’PreTgeKan(A) by [37, Lemma 7.5];

here, the regularity and (f4) conditions are used only in the last isomorphism. Taking étale sheafification, by
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Temkin’s results, we obtain an equivalence in Shvét(RigSmK,Condhght(Sp))
Lo LpABGL 5 Lo Q¥#erP".
To conclude, we deduce from above that
LeLai(Z X BGL) = (LeLaiZ) X (Lo LpoiBGL) — L QPP K™ > Q1,0 Ly K™,
where the first equivalence uses the fact that Ls and L1 commute both with finite products. m|

We have used a variant of [38, Lemma 2.8] on exchanging geometric realisations and derived limits.

4.6.4 - Lemma. Let C be a stable co-category equipped with a t-structure which is left complete [43, Proposition
12.1.77]. Let I be an co-category such that lim; sends Fun(Z1,C=°) into C=™ for certain m; € N. Let (X;4)ics be a
diagram of simplicial objects in Cxq, i.e. X; [, is connective for all i € I,[n] € A, then the limit over I commutes

with geometric realisation, i.e.

lim X; .| = lim |X,.|
iel iel

where we denote by lim; e X; o the levelwise limit of simplicial objects in C.

Proof- The co-categorical Dold-Kan correspondence for stable co-categories [43, Theorem 1.2.4.]] says that
Fun(N(A)°P,C) =~ Fun(N(N),C), and under this equivalence, a simplicial object X, is identified with the

sequence of geometric realisations of its skeleta
|Sk0Xo| - |Sk1X-| — .

Moreover, we have
| Xe| = lim |sk, X.|.
-

n
Thus the equivalence stated in the lemma is equivalent to

lim |sk, lim Xj; o = limlim|san,»,.|.
- iel iel —
n n
By left completeness (so-called "convergence of Postnikov tower"), it suffices to check isomorphisms on their
k-truncations 7<;. By (—my)-connectivity assumption on lim; and right--exactness of l(in , it is the same as
n
checking 7z of the n-th term with # := £ + my; hence we are reduced to proving this equivalence after dropping

out lim , i.e. to prove
—n

sk, lim X;o| ~ lim [sk, X;
iel iel ’

for n = k+m;. But this follows from the commutativity between limits and finite colimits in a stable co-category
[43, Proposition 1.1.4.1]. O

4.6.5 - Example. Here are some main cases where the connectivity condition of the lemma (4.6.4) is satisfied:

(i) The limit is a product, i.e. lim; can be realised as a product [] ; for some set /, but under the condition
the []; is ¢-exact on C. This is the case for example where C = Cond,(Sp) and J is a k-small set. In
this case, we can choose m; = 0.

(ii) The index category I is (the nerve of) N, so that m; =1 by vanishing of higher derived limits in degrees
> 1

Now, we are going to relate the analytic K-theory a la Kerz-Saito-Tamme to the continuous K-theory.

Before that, let us recall the two versions of continuous K-theory and their relations.
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4.6.6. Nuclear-continuous K-theory. Recall that in Andreychev’s thesis [l], for any Tate complete Huber
ring A, he applied Efimov’s K-theory to the dualisable category Nuc(A) to define the non-connective nuclear-
continuous K-theory spectrum K< (A), which agrees with the continuous K-theory K¢on(4) a la Morrow (defined

using integral models) thanks to Efimov’s Continuity Theorem [1, Satz 5.8] (cf. [24, Example 1.30]). Let us recall
the proof of their identification.

4.6.7 - Theorem (Efimov, Andreychev). For Tate complete Huber rings A, there is a natural isomorphism of spectra

K™ (4) = Keont(4).

con

Proof. Let A be a ring of definition of 4 with a pseudouniformiser @ € Ay, so that Ay [%] = A. First, observe

the following diagram:

Tor(w™) —— P(Ao) —L 9(AO[%])

(4.6.7.1) l l l

TornuC(woo) — Nuc(Ao) L) Nuc(Ao[%])

Here L and L’ denote the canonical localisation functors and Tor(w®) and Tor™(w®) denote their kernels.
Then the function Tor(@w™) — Tor™°(w®) is an equivalence according to [l, Satz 4.11], hence applying the

Efimov’s K-theory, we obtain a pullpack-pushout square

K(4y)) —2— K(4o[L1])

(4.6.7.2) l l

KIU (o) — K2 (4o[ 1)

in the stable co-category of spectra. By Efimov’s Continuity Theorem, we have a natural isomorphism of spectra

K2 (4o) 5 Kcont(4o), hence as pushouts we get an isomorphism of spectra KI°¢ (4) 5 Keont(4). |

conl cont

4.6.8. Condensed nuclear-continuous K-theory. It is possible to upgrade the isomorphism of spectra (4.6.7)
to an isomorphism of condensed spectra. For this, we first upgrade the concerned spectra to condensed

spectra.

On the one hand, the continuous K-theory spectrum Kcont(4o) as above underlies the condensed spectrum

Kcont(AO) = l(ln K(A()/’w'”),

where the K-theory spectra K(4y/@") are endowed with the discrete topology; then we define the condensed
continuous K-theory spectrum K oni(4) as the pushout

K(49) — K(4)

(4.6.8.1) l l

Kcont(AO) — Kcont (A)

within the stable co-category Cond(Sp).
On the other hand, K?¢ (4) can be upgraded to a condensed spectrum K™ (4) as follows. Let (4, 4%)

cont cont

be a complete Huber pair. Recall that for any profinite set .S, the object Spa(4,4%) x § is the well-defined adic

space associated with the complete Huber pair (C(S,4),C(S,4*)). Consider the presheaf
Kion (4) : ProFin — Sp
S Kion (C(S,4))

conl

91



It sends finite disjoint unions to products, so defines a sheaf on the site of extremally disconnected sets. We
nuc

are going to show that K7t°

nuclear-continuous K-theory spectrum of A, and globalise it to any locally Tate adic spaces.

(4) defines a sheaf on the whole site of profinite sets, and call it the condensed

4.6.9 - Theorem. Let A be a Tate complete Huber ring with ring of definition Ay and a pseudouniformiser w € Ay.
Let (Ao, I) be an adic pair with I C Ay weakly pro-regular ideal. The presheaf KPS, (Ao) is a sheaf on ProFin.

cont

More precisely, for any profinite set S and any hypercovering So — S by extremally disconnected sets, we have a
natural isomorphism
K2 (C(S. 4p)) = Im K25 (C(S.. Ay).

cont
A

Proof. The ideal I = wdy C Ay is weakly pro-regular by [, Lemma 4.1, Lemma 3.5], so that the problem is
well-posed. Consider the Zg-solid algebra 4y = l(Lnn Ap/I". Since the natural map

colimper Z[S.] — Z[S]

becomes an equivalence after Zg-solidification [12, Proposition 5.6], after taking (external) R Hom(—,4p) we

obtain a cosimplicial resolution (of rings)
C(8.40) = lim C(S.. 4p).
By Efimov’s Continuity Theorem, there is a natural isomorphism of spectra

K (C(S. 40)) = LimK(C(S. 40/1")).

con!
n

We claim that
K(C(S,40/1") > imK(C(S..40/1"). neN.

Indeed, by writing the hypercovering S¢ — S as a cofiltered limit of hypercoverings S, ; — §; (indexed by
J € J) of finite sets by finite sets, which in particular splits, we have

K(C(S;,40/I")) = limK(C (8., 40/1"))-

Now take the filtered colimit with respect to j € J°P: as the algebraic K-theory K(-) commutes
with filtered colimits of rings and C(S,4¢/I") = 1i_r>nj C(8j,Ao/I"), similarly termwisely C(S.,4o/I") =
li_r)n]_ C(S,j,Ao/I"), we obtain

K(C(S,40/I") = imK(C(S;, 40/1")) = limlim K (C (... 40/1"))
J J

> lim lim K(C (8., 40/1"))
J
= limK(C(S., 4o/1"))

The second to last isomorphism can be seen by comparing the convergent spectral sequences
Elf = 1y (K(C(Sp, A0/T")) = 7 (peg) (K(C (S, 40/ T™)))
E{J’q =n_¢(K(C(Sp,40/1"))) = 7_(psq) (K(C(S,40/1"))).

Indeed, 7_(p+4) commutes with filtered colimits, and

7 JK(C(T,40/1")) ~ Map(T,7_,K(4o/I")) = C(T,Z) @z 7_,K(Ay/I")
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for any finite set 7', so the the above spectral sequences degenerates already at the page E; by exactness of the
complexes 0 — C(S;,Z) — C(8;,Z) — C(Sy,5,Z) — --- forany j € J. O

4.6.10 - Corollary. For any Tate complete Huber ring A, we have a natural isomorphism of spectra

Knuct(c(S’A)) i) ](iLnKnuc (C(S.,Ao)).

con cont
A

In particular, KGT (A) is a sheaf on ProFin valued in spectra; in other words, Kioni (4) is a condensed spectrum.

Proof. This follows from the theorem as in the proof of (4.6.7), using the diagram (4.6.7.2). O

4.6.11 - Theorem. For any Tate complete Huber ring A, there is a natural morphism of condensed spectra

Knuct(A) _> Kcont(A)

conl

Proof. For any profinite set S, the topological ring C (S, 4) is still a Tate complete Huber ring, so we may apply
theorem (4.6.7) to conclude. O

We are ready to relate the analytic K-theory a la Kerz-Saito-Tamme to the nuclear-continuous K-theory.

4.6.12 - Theorem. For qegs Z € Rigy, there are natural isomorphisms of condensed spectra

LaK™(Z) S LyKeom (Z) = K™ (2).

“*cont

Proof. By analytic descent, we are easily reduced to the case where Z = Sp 4 is affinoid. Then the first

isomorphism holds by (4.6.11), even before taking A'-localisation. The second isomorphism is [22, Theorem

5.18]. O

Finally, let us come back to higher étale Chern class maps and regulators.

4.6.13. Higher syntomic and étale Chern class maps (continued). Using (4.6.3) and following the steps of
(4.5.9), for Z € RigSmg, we obtain natural higher syntomic Chern class maps

" KM(Z) > H HA(Z,1), i,jeN

(4.6.13.1) ¢ o

and natural higher étale Chern class maps
(4.6.13.2) ¢ KIN(2Z) > Hy (2.2,(1). i.jeN

in CondAb on the étale analytic K-groups of Z. They are compatible through the comparison map (4.5.7.2).
Recall that we have maps in SthiS(RigSmK,Condhght(Sp))

F0 = [ot(Z X BGL) — Let(Z X BGL) = K™ — K™ K™

“*cont*

Therefore, these newly defined higher Chern class maps refine (4.5.9.2) and (4.5.9.3), and induces higher Chern

class maps on the analytic K-groups K;“(Z), Jj €N, in so particular on the nuclear-continuous K-groups.

4.6.14. Higher étale regulators (continued). For Z € RigSmg and i,j € N, let ¢ 'é‘ : Ka“’ét(Z) -
HO(gK, 22 /(Zc,Z[,(l))) be the map induced by the hlgher étale Chern class map c{* (4 6.13.2) and the

Hochschlld Serre spectral sequence boundary map dy : 2 j(ZC,Zp( ) — HO(%K, 21 ](Z(;,Zl,(l))) We
define
(4.6.14.1) K3™(2)y = ker(K2™*(Z) —>H0(g¢K, H2 7 (Z¢,Z,(1))))
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and the higher étale regulator map

(4.6.14.2) r KMNZ) — HY Gk Hy 7 (Ze. Zy(1)))

t

induced from Cl»é;lKan,ét(Z)O and the Hochschild-Serre spectral sequence map
T8

2i—j . 2i—j-1 .
61 Hy' ' (Ze,Zy(i))o = ker 6o — H (G, Hy' ™™ (Zc, Zy (i)

This newly defined higher étale regulator map rle; refines that of (4.5.10.2), and induces higher étale regulator

map on K;"(Z)y. We shall use the same notation for the rational coefficients Q,(i).

4.6.15 - Theorem. Let Z € RigSmg be proper. The étale regulator map rf; (4.6.14.2) factors through the condensed
subgroup

2i—j— ) 2i—j— )
HY\ (G Hyy 7 (Ze.Qy(1)) € H' Gk Hy 77 (Z0.Qy(1))).
Proof. The proof goes verbatim as that of (4.5.11). O

4.6.16 - Remark. Since the syntomic cohomology and (pro)étale cohomology satisfy even éh-descent in Rigy,
one may replace the site RigSmge by Rigg o, thanks to Haoyang Guo’s description of local nature of the
éh-topology, so as to extend the above theorem to the case of (possibly singular) proper Z € Rigy.
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