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Abstract

We construct for rigid-analytic varieties over a p-adic local field a natural syntomic descent spectral

sequence compatible with the Hochschild-Serre spectral sequence. We also define a motivic analytic K-theory

for smooth rigid-analytic varieties together with syntomic and étale higher Chern class maps on K -groups.

We deduce from the above compatible spectral sequences that the rigid-analytic étale regulator maps factors

through the geometric Selmer groups of Bloch-Kato if the rigid-analytic variety is proper.

Contents

0 Introduction 2

0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 Outline of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Preliminaries 8

1.1 Sheaves and derived categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Condensed mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Condensed group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Condensed cohomology theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Arithmetic syntomic cohomology 30

2.1 Arithmetic and geometric Hyodo-Kato morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Overconvergent variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Arithmetic syntomic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Syntomic descent spectral sequence 47

3.1 Syntomic-proétale period map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Construction of morphisms of spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Syntomic descent spectral sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Chern classes of vector bundles and regulators 62

4.1 First Chern class maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1



4.2 Projective bundle formula and A1-homotopy invariance . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Chern classes for vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Image of étale regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Higher Chern class maps and étale regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Towards étale analytic K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

0 Introduction

In this article, we (re)consider the arithmetic syntomic cohomology for rigid-analytic varieties over p-adic local

fields, define a rigid-analytic analogue of Soulé’s étale regulators, and, in the proper case, study their images.

0.1 Main results

Let K be a p-adic local field of mixed characteristic (0,p) with ring of integers OK , algebraic closure K and

absolute Galois group GK := Gal(K /K ).

0.1.1. Motivation: algebraic setting. Recall that syntomic cohomology for proper and smooth schemes over

OK was introduced by Fontaine and Messing [27] in their proof of the crystalline-étale comparison theorem

as a natural bridge between crystalline cohomology and étale cohomology. It was generalised later by Kato

[36] to log-syntomic cohomology for semistable schemes over OK (allowing horizontal divisors), and further

extended by Nekovář and Nizioł [46] to a syntomic cohomology theory for arbitrary varieties over K or K .

Very roughly speaking, for r ∈ N and for schemes X semistable over OK , the r -th (log-)syntomic cohomology

is the filtered Frobenius eigenspace (up to certain power of p ) of the absolute (log-)crystalline cohomology

associated with the eigenvalue pr ; then it is rationalised and globalised to arbitrary varieties over K or K using

alteration techniques. The syntomic cohomology could be thought of as a p-adic analogue of Deligne-Beilinson

cohomology for complex manifolds X , which is defined as the cohomology of the Deligne complex

Z(r )D : 0→ Z(r ) → Ω1
X → Ω2

X → · · · → Ωr−1X .

Indeed, since its introduction, log-syntomic cohomology has proved to be useful in the study of special values

of p-adic L-functions and in formulating p-adic Beilinson conjectures.

Let us recall Nekovář and Nizioł’s result [46, Theorem A].

Theorem (Nekovář-Nizioł). For any varieties over K , there is a canonical graded commutative dg Qp -algebra

RΓsyn (Xh ,∗) such that

(i) It is the unique extension of log-syntomic cohomology to varieties over K that satisfies h-descent.

(ii) It is a Bloch-Ogus cohomology theory.

(iii) For X = SpecK , we haveH ∗syn (Xh ,r ) ≃ H ∗g (GK ,Qp (r )), whereH i
g (GK ,−) denotes the Ext-group Exti (Qp ,−)

in the category of potentially semistable Galois representations of GK .

(iv) There are functorial syntomic-étale period maps

𝜌arithsyn : RΓsyn (Xh ,r ) → RΓét (X ,Qp (r )), 𝜌
geom
syn : RΓsyn (XK ,h ,r ) → RΓét (XK ,Qp (r ))

compatible with product structures and inducing quasi-isomorphisms after taking the canonical truncation 𝜏≤r .

(v) The Hochschild-Serre spectral sequence for étale cohomology

HSEi ,j2 = H i
cont (GK ,H

j
ét (XK ,Qp (r ))) ⇒ H i+ j

ét (X ,Qp (r ))
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has a syntomic analogue, the syntomic descent spectral sequence

synEi ,j2 = H i
g (GK ,H

j
ét (XK ,Qp (r ))) ⇒ H i+ j

syn (X ,Qp (r )).

(vi) There is a canonical morphism of spectral sequences synEi ,jt ⇒étEi ,jt compatible with the syntomic-étale period

map.

(vii) There are syntomic Chern class maps

c syni ,j : K j (X ) → H 2i− j
syn (Xh ,i )

compatible with Chern classes via the syntomic-étale period map.

For finite-dimensional Qp -representations V of GK , the extension groups H i
g (GK ,V ) that appear in (iii),

so-called geometric Selmer groups, were introduced by Bloch and Kato [6] as part of the local tools for the

Tamagawa Number Conjecture and the Tate-Shafarevich group of a motive. These extension groups are

crucial in many questions in modern algebraic number theory due to the fact that there is a natural injection

from H 1
g (GK ,V ) into H 1 (GK ,V ) which is often strict. In light of (v) and (vi), syntomic cohomology groups can

be viewd as a higher dimensional (or geometric) generalisation of these extension groups. They are used as an

approximation of p-adic étale motivic cohomology (a refinement of p-adic étale cohomology capturing classes

coming from geometry), and enter into the study of special values of p-adic L-functions, more precisely the

p-adic regulators.

0.1.2. Rigid-analytic syntomic cohomology. For rigid-analytic varieties, which are deemed to be a suitable

non-archimedean analogue of complex analytic spaces, the syntomic cohomology still serves as a useful tool

for proving p-adic comparison theorems and even beyond them. We wish to extend the above theorem (0.1.1)

to the rigid-analytic context.

Our principal object of interest has been well-defined: for smooth rigid-analytic varieties, it can be ob-

tained by 𝜂-étale hyperdescent from the (log-)syntomic cohomology for models due to Fontaine and Mess-

ing (and Kato) [17, 19]; it can be further defined for general (singular) rigid-analytic varieties by further

éh-hyperdescent [9] thanks to the nice local smoothness of the éh-topology studied by Haoyang Guo [32].

The rigid-analytic syntomic cohomology was employed firstly by Colmez and Nizioł to prove a (potentially)

semistable comparison theorem for smooth and proper semistable formal schemes over OK (allowing horizon-

tal divisors) [16], later generalised to the case of smooth proper rigid-analytic varieties [20], which has another

proof by Bosco [9] using period sheaves and the Fargues-Fontaine curve. The syntomic method is important

in the study of the Stein rigid-analytic varieties by Colmez, Dospinescu and Nizioł [13] in the semistable case,

and continued by their other works [17, 19, 20] and by Bosco [8, 9].

0.1.3. Syntomic descent spectral sequence. What come next in the rigid-analytic analogue of Theorem

(0.1.1) are syntomic-proétale period maps and a syntomic analogue of the Hochschild-Serre spectral sequence

(see (3.1.3), (4.2.12), (3.1.8) resp. (3.2.17), (3.2.12), (3.3.7) for details).

Theorem (Syntomic descent spectral sequence). Let X be a (quasi-separated, finite-dimensional and paracompact)

proper or smooth Stein rigid-analytic variety or smooth dagger affinoid rigid-analytic variety over K . Let r ≥ 0.

(i) There are functorial syntomic-proétale period maps

𝜌arithsyn : RΓsyn (X ,r ) → RΓproét (X ,Qp (r ))

compatible with product structures and inducing quasi-isomorphisms after the canonical truncation 𝜏≤r .

(ii) The Hochschild-Serre spectral sequence for proétale cohomology

HSEi ,j2 = H i
cont (GK ,H

j
proét (XC ,Qp (r ))) ⇒ H i+ j

proét (X ,Qp (r ))
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admits a natural map from the syntomic descent spectral sequence

synEi ,j2 ⇒ H i+ j
syn (X ,r )

compatible with the syntomic-proétale period maps.

(iii) If X is proper over K , then the syntomic descent spectral sequence is identified with

synEi ,j2 = H i
g (GK ,H

j
proét (XC ,Qp (r ))) ⇒ H i+ j

syn (X ,r )

compatible with the natural maps H i
g (GK ,−) → H i

cont (GK ,−).

Here, all the cohomology groups are upgraded to the condensed world.

0.1.4 - Remark. The assumption on X relies essentially on our known instances of Cst-conjecture, and would

be further relaxed to partial properness if the latter was proved in general (see the remarks (3.2.13) and (3.2.6)).

0.1.5 - Remark. There is another collection of period maps, the Fontaine-Messing period maps 𝛼FM
r [17], defined

by globalising the Fontaine-Messing period maps on semistable models [27], which induce quasi-isomorphisms

after the canonical truncation 𝜏≤r [17, Corollary 7.3]. However, a priori, it is unclear whether the period maps

𝛼FM
r fit for (ii) and eventually (iii). On the contrary, the arithmetic and geometric period maps 𝜌syn that we

define in this article have good compatibilities, but it is unclear about their truncated quasi-isomorphisms.

One of our main points is that there are natural homotopies 𝛼FM
r ≃ 𝜌syn thanks to the uniqueness of geometric

period morphisms [29].

0.1.6 - Remark. The reason for the properness condition in the Theorem (0.1.3, iii) is twofold. Firstly, the

H i
g (GK ,−) groups were defined only for finite-dimensional Qp -representations of GK , and the proétale coho-

mology groups are only known to be finite-dimensional Qp -vector spaces for proper rigid-analytic varieties.

It fails for Stein varieties in general, but it may not be the most important reason that we require properness.

Second and more importantly, and probably related to the previous point, one lacks semistable comparison

theorem in the non-proper case. However, the proétale-to-de Rham comparison conjecture/theorem [20, §9]

could help reformulate synEi ,j2 in terms of proétale cohomology for small varieties satisfying the Cst-conjecture

(namely those with de Rham slopes ≥ 0 in the terminology of [20, §1.2.3]).

One possible logarithmic generalisation of this result could be allowing horizontal divisors, namely con-

sidering the Kummer proétale cohomology of proper log-smooth fs log-rigid spaces, whose foundation and

finiteness were established by Hansheng Diao, Kai-Wen Lan, Ruochuan Liu, Xinwen Zhu [23, Theorem 6.2.1].

An analogue [58] of Temkin’s altered local uniformisation could be helpful. The author hopes to return in the

future to these aspects beyond proper cases.

0.1.7. Bloch-Kato exponential. As a corollary of Theorem (0.1.3), we obtain a description of the Bloch-Kato

exponential. For this, recall that the arithmetic syntomic cohomology fits into a fibre sequence

RΓsyn (X ,r ) → RΓHK (X )𝜑=p
r ,N =0

𝜄arithHK→ RΓdR (X )/F r ,

where 𝜄arithHK : RΓHK (X ) → RΓdR (X /K ) denotes the rigid-analytic arithmetic Hyodo-Kato morphism. It yields

boundary maps 𝜕 on cohomology groups.

Corollary. Let i ∈ N. The composition

H i
dR (X )/F

r 𝜕→ H i+1
syn (X ,r )

𝜌arithsyn→ H i+1
proét (X ,Qp (r )) → H i

proét (XC ,Qp (r ))

is the zero map. The syntomic descent spectral sequence then induces a map

H i
dR (X )/F

r → H 1
cont (GK ,H i

proét (XC ,Qp (r ))).
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If X is proper over K , then it is equal to the Bloch-Kato exponential map associated with the finite-dimensional [50]

Qp -representation H i
proét (XC ,Qp (r )) of GK .

To this end, for general X ∈ RigK , the boundary map 𝜕 that appears above can be considered as a higher

dimensional analogue of Bloch-Kato exponential map.

0.1.8. Syntomic regulators. Dirichlet, followed by Dedekind, defined in the 19th century a regulator map

(in fact, a logarithm map) from units in the ring integers OE of an algebraic number field E to certain finite-

dimensional real vector space; they showed then that the image forms a lattice, whose covolume, also called

regulator, together with some other invariants of E are related to special values of 𝜁-functions (Dirichlet’s class

number formula), of which the regulator serves as the transcendental part.

The term regulator has since been used to denominate certain maps relating cycle class invariants, e.g.

K -groups, Chow groups, to cohomological groups. One famous arhimedean example is the Beilinson regulator

which takes values in Deligne-Beilinson cohomology groups. Intuitively speaking, the regulator plays the role

of an abstract integration theory.

The syntomic cohomology has been considered as the p-adic analogue of Deligne-Beilinson cohomology

(see for example [Nek98]). Then, the syntomic regulator being regarded as an abstract p-adic integration, the

Bloch-Kato exponential map above compares certain p-adic integrals to the values of the p-adic étale regulator.

The map of spectral sequences in the Theorem (0.1.3, ii) allows us to study the image of p-adic (pro)étale

regulator maps via syntomic regulators. Let us be more precise in the following.

0.1.9. Image of étale regulators: algebraic setting. Let us start with the algebraic setting. Let X be an

algebraic variety over K . There are étale Chern class maps c ét0 : K0 (X ) → H 2i
ét (X ,Qp (i )) for i ∈ N, where

K0 (X ) denotes the Grothendieck group of the commutative monoid of all isomorphism classes of vector

bundles with the monoid operation given by direct sum. It can be generalised to higher (connective) K -groups,

so we have étale higher Chern class maps

c éti ,j : K j (X ) → H 2i− j
ét (X ,Qp (i ))

for i , j ∈ N. We may consider the subset of homologically trivial elements of K j (X ) along c éti ,j , which is defined

as

K j (X )0 := ker(K j (X )
c éti ,j→ H 2i

ét (X ,Qp (i )) → H 2i
ét (XK ,Qp (i ))).

By Hochschild-Serre spectral sequence, the map c éti ,j induces Soulé’s étale higher regulator map

r éti ,j : K j (X )0 → H 1
cont (GK ,H

2i− j−1
ét (XK ,Qp (i ))).

Nekovář and Nizioł proved the following result on the image of regulators r éti ,j [46, Theorem B], already know

to Scholl, which generalised their own previous results with good or semi-stable reduction to arbitrary varieties

over K .

Theorem (Scholl, Nekovář-Nizioł). The regulators r éti ,j factors through the subgroup

H 1
g (GK ,H

2i− j−1
ét (XK ,Qp (i ))) ⊂ H 1

cont (GK ,H
2i− j−1
ét (XK ,Qp (i ))).

This follows directly from nice properties of syntomic cohomology (e.g. projective bundle formula and

A1-homotopy invariance), their theorem on syntomic descent spectral sequence (0.1.1) and compatibility of

syntomic and étale Chern class maps with the syntomic-étale period maps.

0.1.10. Image of étale regulators: rigid-analytic setting. Similarly as in Theorem (0.1.9), our Theorem on

syntomic descent sepctral sequence (0.1.3) should have a direct consequence concerning rigid-analytic étale
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regulators. The main object in play is certain K-theory in the rigid-analytic setting. We have two candidates:

the (non-connective) analytic K-theory K an à la Kerz-Saito-Tamme [37, 38] and the (non-connective) nuclear-

continuous K-theory Knuc
cont for analytic adic spaces à la Andreychev [1] (essentially equivalent to Morrow’s

continuous K-theory); the first is built from algebraic K-theory but forcing (pro-)A1,an-homotopy invariance,

while the latter is built from the category of (derived) nuclear modules “just as” the algebraic K-theory is built

from the category of perfect complexes.

We adopt the first construction for the moment, and view K an as a presheaf on RigK with values in

Condlight (Sp). We prove that there is a rigid analogue of Theorem (0.1.9), as follows (see (4.5.11) and (4.6.15) for

details).

Theorem (Image of (pro)étale regulators). Let X be a rigid-analytic variety over K . There are rigid-analytic

(pro)étale regulators

r éhi ,j : K
an,éh
j (X )0 → H 1

cont (GK ,H
2i− j−1
proét (XC ,Qp (i )))

for i , j ∈ N, which factor through synE 1,2i− j−1
2 →HSE 1,2i− j−1

2 = H 1
cont (GK ,H

2i− j−1
proét (XC ,Qp (i ))). In particular, if X

is proper, then the regulators r éhi ,j factor through the geometric Selmer groups

H 1
g (GK ,H

2i− j−1
ét (XC ,Qp (i ))) ⊂ H 1

cont (GK ,H
2i− j−1
ét (XC ,Qp (i ))).

Here, we denote by K an the non-connective analytic K-theory functor on RigK , which is a Nisnevich

sheaf; it takes values in the ∞-category of light condensed spectra. There is a natural map K naive
0 → 𝜋0K an of

presheaves on RigK , where K
naive
0 (X ) is the naive Grothendieck (abelian) group (without condensed structure)

of the commutative monoid of all isomorphism classes of vector bundles on X . We denote the éh-sheafification

of K an by K an,éh. Finally, we define the K an,éh
j as the objectwise j -th homotopy group of K an,éh, i.e. we define

K an,éh
j := 𝜋

pre
j K

an,éh :
RigK → CondAb

X ↦→ 𝜋 j (K an,éh (X )).

Since there are natural maps K an
j → K an,éh

j , these results still hold when we restrict the Chern class maps and

regulator maps to K an
j .

0.2 Outline of proofs

0.2.1 (Usage of condensed mathematics). To have a better control on p-adic cohomology theories, which have

huge cohomology groups and are thus difficult to handle as plain groups, one need to take their natural, if

not canonical, topological structures into account. Our point of view will be upgrading objects and statements

to the condensed world without much loss of information. The advantage of condensed mathematics that we

take in this article is essentially the good homological algebraic properties of solid p-adic functional analysis,

especially those of nuclear modules over Qp , such as behaviours of interactions between countable limits and

solid tensor products.

We would like to express our belief that many results could have been done in the more classical language

of locally convex topological Qp -vector spaces or in other potentially adequate models of topological structures

on algebras, but we are not going to pursue this point of view.

0.2.2. Let us look at the first Theorem (0.1.3). As observed above in (0.1.5), it is easy to find a candidate,

namely the Fontaine-Messing period maps 𝛼FM
r to satisfy the assertion (i), however it is not clear whether they

fulfill (ii) and (iii); on the other hand, using (condensed) proétale period sheaves as in [9], one may construct

Galois equivariant geometric period maps 𝜌
geom
syn , with the help of which the statements (ii) and (iii) are more

accessible; the uniqueness proved by Sally Gilles [29] reunites these two sets of period maps.

Now let us focus on (ii) and (iii). Following the path of proof of Nekovář and Nizioł, we find that the key

is the compatibility between arithmetic and geometric Hyodo-Kato morphisms, not only after taking derived
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fixed points and monodromy-trivial elements but also before it. In other words, we should have the following

Galois equivariant commutative diagram

(0.2.2.1)

RΓHK (X ) ⊗■F B+st RΓdR (X /K ) ⊗■K B+dR

RΓHK (XC ) ⊗■F̆ B
+
st RΓinf (XC /B+dR)

𝜄arithHK ⊗𝜄p

≃
𝜄
geom
HK

for X ∈ RigK , where the vertical maps are obvious ones and 𝜄p : B+st → B+dR is the canonical embedding given

by log[p♭] ↦→ log
(
[p♭ ]
p

)
. Let us discuss the Hyodo-Kato morphisms appearing in the horizontal maps. Recall

that Colmez and Nizioł defined globally for rigid-analytic varieties (as well as dagger varieties) an arithmetic

Hyodo-Kato morphism in [17] using zig-zag construction, which we denote for the moment by 𝜄arith,CNHK , and

defined a geometric Hyodo-Kato morphism in [19] using Beilinson’s method, which we denote by 𝜄
geom,CN
HK .

It is unclear to the author whether these two Hyodo-Kato morphisms are compatible via the obvious

maps; if it is the case, then our paper should have been greatly shortened on this issue; otherwise, we are at

least able to construct by Galois descent a seemingly new arithmetic Hyodo-Kato morphisms 𝜄arithHK making the

diagram (0.2.2.1) commutative and Galois equivariant. Indeed, this follows essentially from our construction.

It is then natural to ask whether there is a homotopy 𝜄arithHK ≃ 𝜄arith,CNHK . We prove this in the semistable

reduction case, however, the homotopy that we construct does not seem to be natural (due to potential higher

associativity issues), since it depends on the choice of uniformiser of a finite extension L of K . Despite this

shortcoming, the syntomic cohomology defined by this new arithmetic Hyodo-Kato morphisms is naturally

isomorphic to the usual one defined by Colmez and Nizioł in [17].

Once the Galois equvariant compatibility (0.2.2.1) is established, the (ii) and (iii), namely the existence

of syntomic descent spectral sequence mapping naturally to the Hochschil-Serre spectral sequence and the

identification of terms of its E2-page in the proper case with Selmer groups, follow as in [46].

0.2.3. Now we turn to the second Theorem (0.1.10). We have proétale first Chern class maps for p-adic proétale

cohomology, which induces by projective bundle formula Chern classes for vector bundles. Similarly, we obtain

a theory of Chern classes taking values in syntomic cohomology groups. These two different Chern classes

are compatible via the period maps 𝜌syn, and even better, compatible with the map from the syntomic descent

spectral sequence to the Hochschild-Serre spectral sequence, from which the Theorem (0.1.10) then follows

immediately for the Grothendieck K0-group K naive
0 (X ) of the category of vector bundles on the rigid-analytic

variety X over K in place of the higher éh-analytic K -group K an,éh
j (for j = 0) on the left hand side of the

regulator map.

Regarding the case of higher K -groups, there remains something to do on the K-theory side; for this

purpose, it is enough to construct Chern class maps for higher analytic K -groups. It suffices in turn to show

the following representability result of (étale) analytic K-theory (4.6.3), which is a direct corollary of [22, §5].

Theorem (Dahlhausen-Yaylali). We have natural equivalences in Shvét (RigSmK ,Condlight(Spc))

LétLA1 (Z × BGL) ≃→ Ω∞𝜏≥0Lét (k an)B
≃← Ω∞𝜏≥0LétK an = Ω∞𝜏≥0K an,ét.

Here, the first term is the étale sheafification of the A1-exactification (seen as a presheaf) of the presheaf

Z × BGL on the category of smooth rigid-analytic varieties over K , an analytic analogue of the algebraic

counterpart; the third term (resp. the second term) is the connective cover of the étale sheafification of the

non-connective analytic K-theory (resp. a variant of it) à la Kerz-Saito-Tamme [37, 38], which is defined as the

Bass construction applied to the connective analytic K-theory (resp. to its connected cover).

Replacing RigSmK with RigK and the étale topology with the éh-topology, one obtains similar results

for K an,éh. Then the machinery of universal Chern classes runs as usual to yield the desired higher Chern class
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maps.

0.3 Structure of the paper

0.3.1. In the first section, we are going to collect some preliminary results from higher topos theory and

condensed mathematics, recall condensed group cohomology, which generalises Tate’s continuous group coho-

mology, and finally discuss what condensed structures we will consider on typical p-adic cohomology theories.

Readers familiar with condensed mathematics may skip this on their first reading.

0.3.2. In the second section, we "redefine" the arithmetic Hyodo-Kato morphism for rigid-analytic varieties to

be compatible with the geometric Hyodo-Kato morphisms defined in [19], which induces the same arithmetic

syntomic cohomology as defined in [17]. We will also extend the construction to overconvergent situation by

standard procedures.

0.3.3. In the third section, we will define the arithmetic syntomic-proétale period map, compare it with the

Fontaine-Messing period maps, and construct morphisms of spectral sequences under specific conditions,

namely the Cst-conjecture.

0.3.4. In the last section, we define and study étale higher Chern class maps for rigid analytic varieties. Along

the way, we provide details of the projective bundle formula and A1-homotopy invariance for syntomic and

integral p-adic (pro)étale cohomology, and produce the higher Chern class maps by standard methods. The

representability of étale analytic K-theory will finally be established before we complete the proof of the main

result on regulators.
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1 Preliminaries

1.0.1. Notation. Fix a prime number p . Let K be a complete discrete valuation field of mixed characteristic

(0,p), with ring of integral OK and perfect residue field k . Let K be the algebraic closure of K and C = K̂ its

p-adic completion, which is still algebraically complete. Let GK = Gal(K /K ) be the absolute Galois groupe of

K , which is a profinite group. Let OK0 =W (k ) be the ring of Witt vectors over k , and F = OF [ 1p ], which is

the maximal unramified subfield of K . Let F nr be the maximal unramified extension of F and F̆ be its p-adic

completion.

Let L be any other complete nonarchimedean field of mixed characteristic (0,p). We denote by kL its

residue field, by FL its maximal unramified subfield with ring of integral elements OFL . We have three log-

structures: the trivial log-structure Otriv
L = (OL ,O×L ), the canonical log-structure O×L = (OL ,OL\{0}) defined

by its closed point, and the fat or hollow log-structure O0
FL

associated to the pre-log-structure (OFL ,OL\{0})
sending 0 ≠ a ∈ OL to [ā] ∈W (kL). We have reductions OL,n := OL/pn for n ≥ 1 and OL,0 := OL/𝔪L ≃ OFL ,1,

which could be decorated to designate corresponding induced log-structures.

1.0.2. We will principally work with ∞-categories, though computations could be done in ordinary categories.
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1.0.3. Rigid spaces. Let L be a complete nonarchimdean field of mixed characteristic. All the rigid-analytic

varieties over L that we will consider are supposed to be quasi-separated, of finite dimension, and paracompact,

i.e. admitting an admissible locally finite affinoid covering; in particular, they are admissible disjoint unions

of connected paracompact rigid-analytic varieties of countable type, i.e. having a countable admissible affinoid

covering. When we regard them as adic spaces, we may use the term rigid spaces.

Let RigL (resp. RigSmL ) denote the category of rigid spaces (resp. smooth rigid spaces) over L.

1.0.4. Cohomological indices are denoted by superscripts, while homological indices are denoted by subscripts.

They could be quite confusing when we mix homotopy theories with cohomological notation of derived cate-

gories.

1.1 Sheaves and derived categories

1.1.1. Stabilisation. Let V be a presentable ∞-category with finite limits. Let ∗ denote its final object. Write

V∗ := V∗/ for the ∞-category of its pointed objects. There is the loop space functor Ω : V∗ → V∗ defined as

sending X to ΩX := fib(∗ → X ); it preserves limits and thus admit a left adjoint Σ : V∗ → V∗. The functors Σ

and Ω are equivalences if V is a stable ∞-category.

In general, V is not necessary stable. The stabilisation of V is the ∞-category

Sp(V∗) := lim(· · · → V∗
Ω→ V∗

Ω→ V∗),

which is universal among stable ∞-categories with a functor from V that sends Ω to an equivalence. Its objects

can be described as a sequence X = (X0,X1, . . . ) together with structural equivalences Xn
≃→ ΩXn+1. There is

an adjunction of functors Σ∞ ⊣ Ω∞, called respectively the infinite suspension spectrum functor and the infinite

loop space functor, between ∞-categories V and Sp(V∗). Concretely, we have Ω∞X = X0, and Σ∞Y is given by

(Σ∞Y )n := colimm ΩmΣm+nY+ together with evident structural morphisms.

1.1.2 - Example (Spaces and spectra). Let Spc be the ∞-category of spaces (or anima). It is presentable and

admits all limits. Its stablisation Sp := Sp(Spc∗) is the ∞-category of spectra. As a right adjoint functor,

the infinite loop space functor Ω∞ : Sp → Spc preserves limits; and Ω∞ |Sp≥0 also preserves sifted colimits

[43, Proposition 1.4.3.9], in particular filtered colimtis and geometric realisations. The key to the proof of the

preservation of sifted colimts is that the formation of sifted colimits in Spc commutes with finite products.

1.1.3 - Lemma. Let R be an ordinary ring. Let LModR := LModHR (Sp) be the stable ∞-category of left R-module
spectra, or simply called left R-modules.

(i) The t-structure on the stable ∞-category Sp induces naturally the canonical t-structure on LModR . The

forgetful functor LModR → Sp is conservative and t-exact. The functor 𝜋0 induces an equivalence

LMod♡R
≃→ ModR ,

where the latter is (the nerve of ) the ordinary category of (discrete) R-modules. The subcategories

LModR,≥0,LModR,≤0 ⊂ LModR are stable under all (small) products and (small) filtered colimits.

(ii) There are canonical equivalences of ∞-categories

D− (R) ≃→ LMod−R , D+ (R) ≃→ LMod+R , D (R) ≃→ LModR .

Proof. The (i) is the content of [43, Proposition 7.1.1.13], and the (ii) is due to [43, Proposition 7.1.1.15, Remark

7.1.1.16]. □

1.1.4. Sheaves and hypersheaves. Let C be a site and V an ∞-category. A presheaf F ∈ Fun(Cop,V ) with
values in V is a sheaf (resp. hypersheaf ) if it satisfies descent for Čech coverings (resp. for hypercoverings).
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Inside the ∞-category of presheaves PShv(C,V ) := Fun(Cop,V ), we define the full ∞-category of sheaves

(resp. hypersheaves) with values in V , denoted by Shv(C,V ) (resp. Shvhyp(C,V )).

If V admits all limits, then the inclusion Shv(C,V ) ⊂ PShv(C,V ) admits a left adjoint L = L𝜏 called

sheafification, with subscript 𝜏 indicating the topology on C, and the inclusion Shvhyp(C,V ) ⊂ Shv(C,V )
admits a left adjoint (−)hyp called hypersheafification. They preserve finite limits. If V admits all limits and

filtered colimits, then L (resp. (−)hyp) can be described as the transfinite iteration of the operation

(1.1.4.1) F ↦→ (F † : U ↦→ lim−−→
U

lim
Δ
F (Č (U ,F )•) ∈ V )

for F ∈ PShv(C,V ), where U runs through the filtered sets of all coverings (resp. hypercoverings) of U and

Č (U ,F )• denotes the Čech cosimplicial nerve associated to U .

If V is a presentable ∞-category, then Shv(C,V ) ≃ Shv(C,Spc) ⊗ V is a presentable ∞-category [44,

Remark 1.3.1.6] with tensor product being the Lurie’s tensor product of presentable ∞-categories (which is

colimit preserving) introduced in [43, §4.8.1].

One can produce hypersheaves by taking global sections, for example namely for any bounded below

complexes of sheaves F on C with values in an abelian category A, the associated global section functor

RΓ(−,F ) : U ↦→ RΓ(U ,F ) is a hypersheaf on C with values in D (A) [42, Lemma 6.5.2.9].

1.1.5 - Example. Let C be a site. We consider the presentable ∞-categories PShv(C,Spc(∗) ), PShv(C,Sp)
as well as Shv(C,Spc(∗) ) and Shv(C,Sp). Then the adjunction Σ∞ ⊣ Ω∞ between Spc and Sp induces

adjunctions Σ∞,pre ⊣ Ω∞,pre between PShv(C,Spc) and PShv(C,Sp), and Σ∞ ⊣ Ω∞ between Shv(C,Spc) and
PShv(C,Sp). For presheaves, Σ∞,pre and Ω∞,pre are given simply by composition with the functors on Cop. For

sheaves, Σ∞ is given by the sheafification of Σ∞,pre, while Ω∞ is given by Ω∞,pre since it preserves sheaves.

In fact, these constructions work more generally for any ∞-topoi X , and there is a canonical adjunction

Σ∞ ⊣ Ω∞ between the ∞-categories X ≃ Shv(X ,Spc) and Shv(X ,Sp), see [44, Remark 1.3.2.2].

By the explicit description of the sheafification functor L (1.1.4.1), and the fact that Ω∞ |Sp≥0 commutes with

sifted colimits (1.1.2), we obtain a commutative diagram

(1.1.5.1)

PShv(C,Spc) PShv(C,Sp≥0)

Shv(C,Spc) Shv(C,Sp≥0).
L

Ω∞,pre

L

Ω∞

1.1.6. Canonical t-structure on sheaves of spectra. Let C be a site. Let n ∈ Z. There is a canonical t-structure
on PShv(C,Sp) given by the pair (PShv(C,Sp≥0),PShv(C,Sp≤0)). Let 𝜋pren : PShv(C,Sp) → PShv(C,Ab)
be the n-th homotopy group functor for presheaves.

There are also well-defined n-th homotopy group functor for sheaves 𝜋n : Shv(C,Sp) → Shv(C,Ab),
which can be identified with the sheafification of 𝜋pren . The functor pin commutes with finite limits. Then, we

have notions of n-connective objects and n-coconnective objects. They span respectively the full subcategories

Shv(C,Sp)≥n and Shv(C,Sp)≥n of Shv(C,Sp), which determine a canonical t-structure on Shv(C,Sp).

This t-structure is compatible with filtered colimits, that is, the full subcategory Shv(C,Sp)≤0 ⊂
Shv(C,Sp) is closed under filtered colimits. Besides, the full subcategory Shv(C,Sp)≥0 ⊂ Shv(C,Sp) is
automatically closed under all colimits, as this inclusion has a right adjoint.

The composition with the truncation functor 𝜏≥0 : Sp → Sp≥0, which preserves sheaves since it is the

right adjoint to the inclusion of connective spectra Sp≥0 ↩→ Sp, induces an equivalences of ∞-categories

Shv(C,Sp)≥0
≃→ Shv(C,Sp≥0).
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The commutative diagram (1.1.5.1) is then refined to

(1.1.6.1)

PShv(C,Spc) PShv(C,Sp≥0) PShv(C,Sp)

Shv(C,Spc) Shv(C,Sp≥0) Shv(C,Sp).
L

Ω∞,pre

L L

Ω∞

The sheafification functor L : PShv(C,Sp) → Shv(C,Sp) is t-exact and symmetric monoidal. By t-

exactness we have isomorphisms

L𝜏pre≥n
≃→ 𝜏≥nL, L𝜏pre≤n

≃→ 𝜏≤nL, L𝜋pre0 ≃ 𝜋0L

for n ∈ Z, as well as a commutative diagram

(1.1.6.2)

PShv(C,Spc) PShv(C,Sp≥0) PShv(C,Sp)

Shv(C,Spc) Shv(C,Sp≥0) Shv(C,Sp).
L

Ω∞,pre

L

𝜏
pre
≥0

L

Ω∞ 𝜏≥0

These also generalise to sheaves of spectra on any ∞-topoi [44, Proposition 1.3.2.7, Proposition 1.3.4.7,

Proposition 1.3.5.7].

Here is a sheafified generalised version of (1.1.3).

1.1.7 - Lemma. Let C be a site. Let O ∈ Shv(C,CAlg(Sp)) ≃ CAlg(Shv(C,Sp)) [44, §1.3.5] be a sheaf of
connective commutative ring spectrum on C, i.e. the underlying sheaf of spectra is connective; and let ModO :=

ModO (Shv(C,Sp)) denote the symmetric monoidal ∞-category of O-module objects of Shv(C,Sp) [44, Definition
2.1.0.1].

(i) The forgetful functor ModO → Shv(C,Sp) is conservative and preserves (small) limits and colimits.
(ii) The t-structure on Shv(C,Sp) induces naturally the canonical t-structure on ModO . The forgetful functor

ModO → Shv(C,Sp) is t-exact. The subcategories ModO,≥0,ModO,≤0 ⊂ ModO are stable under (small)

filtered colimits.

(iii) If the structure sheaf O is discrete, then the functor 𝜋0 induces an equivalence

Mod♡O
≃→ ModO (Shv(C,Set)),

where the latter is (the nerve of ) the ordinary category of (discrete) O-modules.
(iv) If the structure sheaf O is discrete, then there is a canonical colimit-preserving and t-exact fully faithful

embedding of ∞-categories
𝜄 : D (Mod♡O) ↩→ ModO,

whose image is the full subcategory of those objects of ModO whose underlying object in Shv(C,Sp) is hyper-
complete.

Proof. The (i) is from [44, Proposition 2.1.0.3 (iii)]. The (ii) follows from [44, Proposition 2.1.1.1] and (i). The (iii)

is clear by definition, cf. [44, Remark 2.1.2.1]. The (iv) is the content of [44, Corollary 2.1.2.3]1. □
1It is a special yet frequent case of loc. cit. Actually, in the case of the ∞-topos Shv(C,Spc) , the condition loc. cit. (b), namely that

for any F ∈ Shv(C,Spc) , there exists an effective epimorphism F ′ → F where F ′ ∈ Shv(C,Set) is a discrete sheaf, turns out to be
a consequence of the condition loc. cit. (a) that the structure sheaf O is discrete. Indeed, for any such F , we can take, similarly in the
proof of [44, Proposition 2.1.2.5], F ′ ∈ Shv(C,Spc) to be the sheafification of the discrete presheaf F ′pre :=

∐
c ∈C,𝜂∈𝜋0F (c ) hC ; then F

′ is
discrete and the canonical map F ′ → F is an effective epimorphism by [42, Lemma 6.2.4.5]. We remark that the existence of such F ′ → F
may fail for more general ∞-topoi than ∞-categories of sheaves.
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1.1.8. Let C be a site and V be a presentable ∞-category with finite limits. Taking sheaves on C commutes

with certain operations:

(i) For another site D, we have canonical equivalences Shv(C,Fun(Dop,V )) ≃ Fun(Dop,Shv(C,V )) and
Shv(C,Shv(D,V )) ≃ Shv(D,Shv(C,V )) ≃ Shv(C×D,V ) sending F : U ↦→ FU toV ↦→ (U ↦→ FU (V ))
(then to U ×V ↦→ FU (V )).

(ii) We have Sh(C,Sp(V∗)) ≃ Sp(Sh(C,V∗)).

1.2 Condensed mathematics

1.2.1. Condensed mathematics. Let us recall some definitions in condensed mathematics:

(i) Let C be an ∞-category that admits small limits. For any uncountable strong limit cardinal 𝜅, one defines

the ∞-category of 𝜅-condensed objects of C as the ∞-category of sheaves on the site of light condensed sets

valued in C, i.e.
Cond𝜅 (C) := Shvhyp(ProF in<𝜅 ,C).

It is the same as the ∞-category of contravariant functors from 𝜅-small extremally disconnected profinite

sets to C that take finite coproducts to products, denoted by

Cond𝜅 (C) ≃ Fun× (EDSop<𝜅 ,C).

(ii) Light condensed theory, introduced by Dustin Clausen and Peter Scholze in their lectures on Analytic

Stacks jointly held in IHES and Bonn, are of certain interest, since most objects that concern us lives in

the light setting. A profinite set is called light if it can be written as a countable inverse limit of finite

sets. One defines the ∞-category of light condensed objects of C as

Condlight (C) := Shvhyp(ProF inlight,C).

(iii) Both Cond𝜅 (C) and Condlight (C) are stable (resp. presentable) ∞-categories if C is stable (resp. pre-

sentable).

(iv) The 𝜅-condensed and light condensed theories can be related via the adjunctions L ⊣ Reslight ⊣
R, where L𝜅 : Fun(ProF inlight,C) → Fun(ProF in<𝜅 ,C) is the left Kan extension L𝜅X (S ) :=

lim−−→S→T ∈ProF inlight
X (T ), and Reslight : Fun(ProF in<𝜅 ,C) → Fun(ProF inlight,C) is the restriction of the

functor to the subcategory ProF inlight ⊂ ProF in<𝜅 , and R𝜅 : Fun(ProF inlight,C) → Fun(ProF in<𝜅 ,C)
is the right Kan extension (or "sheafification") R𝜅X (S ) := limProF inlight∋T→S X (T ). The formula shows

that Reslight ◦L𝜅 ≃ id, so L𝜅 is fully faithful; and Reslight ◦R𝜅 ≃ id, so R𝜅 is also fully faithful; Moreoever,

both Reslight and R𝜅 preserves sheaves, so restricts to an adjunction Reslight ⊣ R𝜅 between Cond𝜅 (C) and
Condlight(C).

As opposed to the 𝜅-condensed case, colimits of light condensed objects may not be computed point-

wisely. Nevertheless, most statements about Cond𝜅 (C) can be transferred to the Condlight(C), sometimes

requiring extra countability control on index sets.

(v) There is a functor const : C → Cond𝜅 (C),X ↦→ X as the composition of the constant functor C →
Fun(ProF in<𝜅 ,C) with sheafification. There is an adjunction const ⊣ ev∗ where ev∗ : Cond<𝜅 (C) → C is

the functor taking underlying objects ev∗X = X (∗). Similarly for the light setting.

(vi) There is a comparison functor 𝛾𝜅 : pro(C) → Cond𝜅 (C), " lim "i ∈IXi ↦→ limi ∈I Xi which preserves small

limit, similarly we have 𝛾light in the light setting; they are related by 𝛾light = Reslight ◦𝛾𝜅2. This could be

thought of as "putting discrete topology on objects of C and then profinite topology on pro-objects". For

2However, it is not true in general that we have L ◦ 𝛾light = 𝛾𝜅 , even when restricted to the subcategory of light pro setting and C = Ab.
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our purposes, it will be indifferent to choose between 𝜅- and light condensed settings. But since light

condensed setting tends to have its own interest, we pretend to keep these two in parallel status in our

paper. All statements will be true both in 𝜅- and light condensed setting, unless otherwise mentioned.

(vii) The restriction functor to light pro-spectra 𝛾light : prolight(Sp+) → Cond𝜅 (Sp) is conservative by Clausen-
Scholze [22, Theorem A.12]3. Here Sp+ denotes the category of bounded above spectra.

1.2.2 - Remark. We are not sure about the proof of [22, Theorem A.12] (Clausen-Scholze), due to my doubts

on whether their functor 𝛾DY𝜅 := R ◦ 𝛾light is really equal to the functor 𝛾𝜅 : prolight (Sp+) → Cond𝜅 (Sp) (with a

superscript now) defined as " lim "iXi ↦→ limi Xi .

Their proof actually proves that 𝛾𝜅 is conservative.

As for the conservativity of 𝛾light, we have not found a way to deduce it from that of 𝛾𝜅 because we do not

know the relation between 𝛾DY𝜅 and 𝛾𝜅 . Nevertheless, their proof works verbatim in the light condensed setting,

by the following lemma, analogue of [22, Lemma A.15] but in the light condensed setting:

1.2.2.1 - Lemma. For a tower (Mn)n∈N of abelian groups the following are equivalent:

(i) The tower is Mittag-Leffler and limn Mn = 0.

(ii) The tower is pro-zero, i.e. " lim "nMn = 0 in pro(Ab).
(iii) We have limn Mn = lim1

n Mn = 0 in Condlight(Ab).

Proof. The proof of (i)⇒ (ii) is totally the same.

The proof of (iii) ⇒ (i) is also the same, except that we have to establish the isomorphisms of abelian

groups

(♣) limnΓ(S ,Mn) ≃ Γ(S , limnMn), lim1
nΓ(S ,Mn) ≃ Γ(S , lim1

nMn)

for the light profinite set S := N ∪ {∞}. For this, noticing that for this special profinite set S , the object

Z[S ] ∈ Condlight (Ab) is an (internally) projective object, so that

RΓ(S ,Mn) ≃ Γ(S ,Mn) [0] .

Using the general isomorphisms R limn RΓ(−,Mn) ≃ RΓ(−,R limn Mn) on ProF inlight for general countable

projective system in Condlight (Ab), we obtain

R lim
n
(Γ(S ,Mn) [0]) ≃ R lim

n
RΓ(S ,Mn) ≃ RΓ(S ,R lim

n
Mn) ≃ Γ(S ,R lim

n
Mn).

Taking cohomology groups, using again the projectivity of Z[S ], one finally obtains (♣).

As for the proof of (ii) ⇒ (iii), we apply [22, Lemma A.15], which shows that R limn Mn = 0 in

Cond𝜅 (D (Ab)). But we have a restriction functor Reslight : Cond𝜅 (D (Ab)) → Condlight (D (Ab)) which
preserves limits, cf. [22, Remark A.7], and which commutes with the "underline" functor M ↦→ M ; so

R limn Mn = 0 remains true in Condlight (D (Ab)). □

1.2.3. (Pre)sheaves of condensed spectra. Let 𝜅 be an uncountable strong limit cardinal. According to (1.1.5),

there are adjunction Σ∞,pre ⊣ Ω∞,pre between PShv(C,Cond𝜅 (Spc)) and PShv(C,Cond𝜅 (Sp)), and adjunction

Σ∞ ⊣ Ω∞ between Shv(C,Cond𝜅 (Spc)) and Shv(C,Cond𝜅 (Sp)).

The same proof as [43, Proposition 1.4.3.9], using results from [42, §7.2.2], shows that the functor Ω∞ :

Cond𝜅 (Sp)≥0 ≃ Cond𝜅 (Sp≥0) → Cond𝜅 (Spc) preserves sifted colimits4; as a right adjoint, it also preserves

3The proof loc. cit. is not correct. Please refer to (1.2.2) for one correct proof.
4The key to its proof is the fact that sifted colimits in Cond𝜅 (Spc) commute with finite products; it can be checked using 𝜅-small

extremally disconnected sets.
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limits. Hence, similarly as (1.1.6), there are commutative diagrams

(1.2.3.1)

PShv(C,Cond𝜅 (Spc)) PShv(C,Cond𝜅 (Sp≥0)) PShv(C,Cond𝜅 (Sp))

Shv(C,Cond𝜅 (Spc)) Shv(C,Cond𝜅 (Sp≥0)) Shv(C,Cond𝜅 (Sp))
L

Ω∞,pre

L L

Ω∞

(1.2.3.2)

PShv(C,Cond𝜅 (Spc)) PShv(C,Cond𝜅 (Sp≥0)) PShv(C,Cond𝜅 (Sp))

Shv(C,Cond𝜅 (Spc)) Shv(C,Cond𝜅 (Sp≥0)) Shv(C,Cond𝜅 (Sp)).
L

Ω∞,pre

L

𝜏
pre
≥0

L

Ω∞ 𝜏≥0

Here is a special case of (1.1.7).

1.2.4 - Lemma. Let R ∈ Cond𝜅 (CAlg)≥0 be a connective condensed ring spectrum, and let Modcond,𝜅R :=

ModR (Cond𝜅 (Sp)) denote the symmetric monoidal ∞-category of R-module objects of Cond𝜅 (Sp).

(i) The forgetful functor Modcond,𝜅R → Cond𝜅 (Sp) is conservative and preserves (small) limits and colimits.
(ii) The t-structure on Cond𝜅 (Sp) induces naturally the canonical t-structure on Modcond,𝜅R . The forgetful functor

Modcond,𝜅R → Cond𝜅 (Sp) is t-exact. The subcategories Modcond,𝜅R,≥0 ,Modcond,𝜅R,≤0 ⊂ Modcond,𝜅R are stable under

(small) filtered colimits.

(iii) If R is discrete, then the functor 𝜋0 induces an equivalence

Modcond,𝜅,♡R
≃→ ModR (Cond𝜅 (Set)),

where the latter is (the nerve of ) the ordinary category of (discrete) condensed R-modules.

(iv) If the condensed ring spectrum R is discrete, then there is a canonical colimit-preserving and t-exact equivalences

of ∞-categories
𝜄 : D (Modcond,𝜅,♡R ) ≃→ Modcond,𝜅R .

The same holds for the light condensed setting.

Proof. This follows from applying (1.1.7) to C = ProF in<𝜅 . For (iv), it suffices to notice that the ∞-topos
Cond𝜅 (Spc) is hypercomplete by definition. The same works in the light condensed setting. □

1.2.5. Solid mathematics. It will be particularly useful to employ "complete" objects, under the name of solid

objects.

(i) There is a subcategory Solid ⊂ CondAb consisting of solid abelian groups, which is a localisation with

left adjoint (−)■ the solidification functor. It is stable under all limits and colimtis, equipped with a

tensor product − ⊗■ − := (− ⊗ −)■, compactly generated under colimits by Z[S ]■ for 𝜅-small extremally

disconnected sets S , hence compactly generated under colimits by their retracts
∏
I Z (in particular

Z[S ]■, isomorphic to a product of Z, is a compact projective for any profinite set S ). For any M ∈
CondAb and N ∈ Solid, we have HomC ondAb(M ,N ) ∈ Solid; similarly on the derived level.

Moreoever, this preservation remains true in the light condensed setting. However, in the light condensed setting, the extremally
disconnected sets do not form a basis for the topology, so we cannot argue by checking in the same way. Nevertheless, we know that sifted
colimits in any ∞-topos commute with finite products [42, Remark 5.5.8.12], so in particular for the ∞-topos Condlight (Spc) .

Alternatively, one can use the restriction Reslight (1.2.1, iv) to deduce the result in the light setting from the 𝜅-condensed setting. Namely,
for any sifted category I and any X ∈ Fun(I ,Condlight (Sp≥0 ) ) , there exists X̃𝜅 ∈ Fun(I ,Cond𝜅 (Sp≥0 ) ) such that Reslight X̃𝜅 = X (for
example applying L𝜅 ); then we have

Ω∞ colimI X = Ω∞ colimI Res
light X̃𝜅 ≃ Reslight Ω∞ colimI X̃𝜅 ≃ Reslight colimI Ω

∞X̃𝜅 ≃ colimI Ω
∞ Reslight X̃𝜅 = colimI Ω

∞X ,

where Reslight passes through colimI since it is a left adjoint and passes through Ω∞ by construction, and the middle commutation is what
we have proven in the 𝜅-condensed setting.
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(ii) For any (noncommutative) condensed ring R, we denote by ModcondR ⊂ CondAb the full subcategory of

R-modules, and Mod■R := ModcondR ∩ Solid the category of R-modules that are solid, which amount to

solid R■-modules. Similarly as Solid, the category Mod■R carries a tensor product − ⊗■R − := (− ⊗R −)■,
and is compactly generated under colimits by (∏I Z) ⊗■Z R.

(iii) Derived solidification analogue holds, and the derived solidification and derived solid tensor products

coincide with respective derived functors. We have Z[S ]L■ ≃ Z[S ]■ [0] by [12, Proposition 5.6].

(iv) For example, there is a canonical isomorphism (∏I Z) ⊗L■Z M
≃→ ∏

I M for any profinite abelian group

M [8, Lemma A.19]. In particular, we obtain (∏I Z) ⊗L■Z OK
≃→ ∏

I OK and then (∏I Z) ⊗L■Z K
≃→

(∏I OK ) [ 1p ] ≃ (
∏
I OK ) [ 1p ].

(v) When the situation is clear, for example for usual topological abelian groups M such as Z, OK , K , C ,

etc., we will not distinguish the notations M and M , unless we want to stress some results in the classical

topological setting.

1.2.6. Let C be a site. We record two consequences of [44, Corollary 2.1.2.3]:

(i) For any ordinary ring R, there is an equivalence of ∞-categories

D (ModcondR ) ≃→ Shvhyp (∗proét,D (ModR))

sending M to S ↦→ RΓ(S ,Γ) on profinite sets S , which simplifies to M (S ) on extremally disconnected

sets S .

(ii) For any condensed ring R, we have equivalences of ∞-categories

D (Shv(C,ModcondR )) → Shvhyp(C,D (ModcondR )), D (Shv(C,Mod■R)) → Shvhyp (C,D (Mod■R))

induced by sending a sheaf F ∈ Shv(C,ModcondR ) to its global section functor RΓ(−,F ).

1.2.7. Convention. For simplicity, we will denote by Hom(−,−) the internal Hom (bi)functor

HomCond(Set) (−,−) or HomC ondAb(−,−) depending on the context, and also denote HomR (−,−) :=

HomModcondR
(−,−) for any condensed ring R; similarly for the derived internal Hom. However, the internal

Hom in categories of solid modules will keep the full notation HomMod■R
(−,−).

1.2.8. Topological structures on p-adic cohomology theories: a review. We may understand the p-adic

proétale cohomology of rigid-analytic varieties over K or C by comparisons with other (integral or rational)

p-adic cohomology theories such as Hyodo-Kato cohomology and de Rham cohomology. However, in order

to control maps between their cohomology groups, which are huge in general with no naive hope of finite-

dimensionality (except in the dagger qcq case), hence it would be useful to put certain topological structure on

them into consideration in order to control the maps between them.

Firstly, Colmez, Nizioł et Dospinescu [13] have considered the category CK of locally convex topological

K -vector spaces, which is a quasi-abelian category. Its left bounded derived ∞-category D (CK ) admits a

t-structure whose left heart LH (CK ) are represented (up to equivalence) by a monomorphism f : E → F ,

where F sits in degree 0. The cohomology groups of an object X ∈ D (CK ) are given by

H̃ n (X ) := 𝜏≤n𝜏≥n (X ) = (coimdn−1 → kerdn) ∈ LH (CK ),

while there are also naive cohomology groups

H n (X ) := (kerdn/coimdn−1) ∈ CK

endowed with the quotient topology. An object (E → F ) ∈ LH (CK ) is called classical if the natural morphism

(E → F ) → F /E = H 0 (E → F ) is an equivalence.
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More recently, Guido Bosco has used in his PhD thesis [8, 9] condensed mathematics to study rational

p-adic Hodge theory, which is related to the previous perspective by the condensification functor [15, Section 4]

CHcg
K → ModcondK , V ↦→V

as well as its natural extension to derived categories, where CHcg
K ⊂ CK denotes the full subcategory of spaces

that are Hausdorff and compactly generated, and ModcondK .

The condensification functor sends strict exact sequences of K -Fréchet spaces (resp. of spaces of com-

pact type) to exact sequences in Mod■K [15, Lemma 2.18]. This applies for example to rational p-adic co-

homology theories such as (pro)étale cohomology, de Rham cohomology, Hyodo-Kato cohomology, since

RΓproét (X ,Qp (i )) can be represented by a complex of Qp -Banach spaces if X ∈ RigqcqsK [13, §3.3.2], by a

complex of Qp -vector spaces of compact type if X ∈ Rig†,qcqsK [15, Proposition 4.23]; similarly for the geometric

case, and for de Rham cohomology and Hyodo-Kato cohomology.

Moreover, for Fréchet spaces, the condensification functor transforms projective tensor products in CK to

solid tensor products [8, Proposition A.68].

1.2.9. Solid p-adic functional analysis. It seems that the condensed, especially solid, mathematics has better

homological behaviors than the classical p-adic functional analysis. For this reason, we will always stick to the

condensed point of view unless arguments demand intervention of the classical one.

We gather some nice features of solid p-adic functional analysis as follows.

(i) There is a particular class of nuclear K -vector spaces. To avoid conceptual confusion with classical

nuclear K -vector spaces, we call the former solid-nuclear K -vector spaces. The classcial nuclear K -vector

spaces are somewhat orthogonal to the concept of K -Banach spaces, as their common objects are finite-

dimensional. On the contrary, any K -Banach space is solid-nuclear.

(ii) Let ModnucK ⊂ Mod■K denote the full subcategory of solid-nuclear K -vector spaces. It is stable under

finite limits, countable products (hence countable limits), all colimits, and the solid tensor product [8,

Theorem A.43]. It contains all K -Banach spaces, and is generated under colimits by these, which are flat

objects for the solid tensor product [8, Corollary A.61]. It contains all K -Fréchet spaces, which can be

written as filtered colimits of K -Banach spaces [8, Proposition A.64].

(iii) Let (Vn)n∈N be a countable projective system of solid-nuclear K -vector spaces, and letW be a K -Fréchet

space; then [8, Corollary A.67 (i)]

lim←−−
n

(Vn ⊗■KW ) ≃ (lim←−−
n

Vn) ⊗■KW.

This can be refined into the following lemma (1.2.9.1). As a corollary [8, Corollary A.67 (ii)], if (Vn)n∈N
be a countable projective system of objects in D (Mod■K ) such that each Vn is represented by a complex

of solid-nuclear K -vector spaces, and ifW ∈ D (Mod■K ) is represented by a bounded above complex of

K -Fréchet spaces, then

R lim←−−
n

(Vn ⊗L■K W ) ≃ (R lim←−−
n

Vn) ⊗L■K W.

1.2.9.1 - Lemma. Let (Vn)n∈N be a countable projective system in Mod■L . Consider the full subcategory C ⊂ Mod■K
consisting ofW such that

lim←−−
n

(Vn ⊗■KW ) ≃ (lim←−−
n

Vn) ⊗■KW.

(i) C is closed under finite colimits.
(ii) IfVn and lim←−−nVn are all flat for ⊗

■
L , then C is closed under finite limits.

(iii) IfVn are all solid-nuclear objects of Mod■K , then C contains all K -Fréchet spaces.

Proof. (i) This is because ⊗■K commutes with all colimits in each variable and lim←−−n commutes with finite colimits.
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(ii) By flatness, ⊗■K preserves finite limits; and lim←−−n commutes with all limits.

(iii) This is [8, Corollary A.67]. □

As a naive example, let us illustrate in a more elementary way what happens when we apply this lemma

to the end of the previous proof.

1.2.9.2 - Example. Here is an elementary example of the lemma (1.2.9.1). LetV1 →V2 be a morphism between

two K -Banach spaces with cokernel N in Mod■K . Let I be a countable set.

(i) The natural map N ⊗■L L⟨I ⟩ →
∏
I N is injective.

(ii) The limit lim←−− J N ⊗
■
L L

〈
J
〉
vanishies, where J runs over all cofinite subsets of I .

Proof. (i) We have an injection N ⊗■L L ⟨I ⟩ ↩→ N ⊗■L
∏
I L by the injectivity of L ⟨I ⟩ →∏

I L and flatness of N

for ⊗■L [8, Corollary A.61]. Consider the following commutative diagram

V1 ⊗■L
∏
I L V2 ⊗■L

∏
I L N ⊗■L

∏
I L 0

∏
I V1

∏
I V2

∏
I N 0

≃i1 ≃i2 i

where the maps i1 and i2 are isomorphisms by [8, Corollary A.59] since I is countable, the first row is exact by

flatness of
∏
I L for −⊗■L [8, Lemma A.58], the second row is exact by exactness of countable products (AB4*)

[12, Theorem 2.2]. From this, one deduces that i is also an isomorphism. Thus follows (i) immediately.

(ii) Consider the short exact sequence of projective systems indexed by cofinite subsets J ⊂ I

0→ N ⊗■L L
〈
J
〉
→ N ⊗■L L⟨I ⟩ → N ⊗■L L

〈
I \ J

〉
→ 0

where again we are using flatness of N . Using left exactness of limit, we obtain a left exact sequence

0→ lim←−−
J

(N ⊗■L L
〈
J
〉
) → N ⊗■L L⟨I ⟩ → lim←−−

J

(N ⊗■L L
〈
I \ J

〉
)

whose rightmost term is identified with
∏
I N . Then (ii) follows from (i). □

1.3 Condensed group actions

1.3.1. Condensed group algebra. Let G be a condensed group. Let 𝜌 be a G -action on a condensed ring R.

We define the R-algebra R [G ]𝜌 , called the skew group algebra of G over R5, to be the R [G ] ∈ CondAb with

multpilication law [g ] · [g ′] = [g g ′] and [g ] · x = g (x) · [g ] for g ∈ G and x ∈ R. We define the category of

R-modules with semilinear G -action by ModcondR [G ]𝜌 , and the derived ∞-category of R-modules with semilinear

G -action by D (ModcondR )G := D (ModcondR [G ]𝜌 ); similarly for solid objects by replacing Modcond with Mod■, or

more generally for analytic rings. We may simply denote R [G ] := R [G ]𝜌 with 𝜌 understood.

1.3.2. Let G be a condensed group on a condensed ring R.

(i) The forgetful functor D (ModcondR [G ]) → D (ModcondR ) induced by the structural ring homomorphism R →
R [G ] (i.e. forgetting the G -action) is conservative and commutes with all limits and colimits. It admits

as right adjoint the orbit functor R HomR (R [G ]𝜌,−), and a left adjoint − ⊗R R [G ]𝜌 .
(ii) Assume the G -action on R to be trivial. Then there is a natural trivial action functor (−)triv :

D (ModcondR ) → D (ModcondR )G induced by the R-algebra homomorphism R [G ] → R, [g ] ↦→ 1 (i.e.

5In some literature, it is denoted by R#G or R ⋊𝜌 G , etc. hence there is no standard notation.
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putting trivial G -action on complexes), which is fully faithful and commutes with all limits and colim-

its. It admits as right adjoint the derived G -fixed points functor (−)G : D (ModcondR )G → D (ModcondR ),
the which is computed by MG ≃ RΓ(G ,M ) := R HomR [G ] (R,M ) ≃ R HomZ[G ] (Z,M ) ∈ D (ModcondR ),
namely the condensed group cohomology of G with coefficients in M . On the other hand, (−)triv admits as

left adjoint the G -coinvariance functor − ⊗R [G ] R.

A standard way to compute the condensed group cohomology of profinite group is to consider the con-

densed cochain complex, cf. (1.3.4.1).

1.3.3 - Lemma. For any condensed group G et M ∈ D (CondAb)G , we have

RΓ(G ,M ) ≃ RHom((· · · → Z[G ×G ] → Z[G ] → Z→ 0),M ).

Proof. The key is the standard bar resolution Z[G •+1] → Z → 0 in ModcondZ[G ] , and the natural equivalence

R HomZ[G ] (Z[G •+1],−) ≃ R Hom(Z[G •],−) killing the first component G ; for the latter, we have Z[G •+1] ≃
Z[G ] ⊗Z Z[G •] ≃ Z[G ] ⊗LZ Z[G •] where the last isomorphism follows from the flatness of Z[G ] over Z. □

1.3.4 - Proposition. Let G be a profinite group. For any M ∈ D (Solid)G ⊂ D (CondAb)G , the condensed group
cohomology is computed by the condensed cochain complex

(1.3.4.1) RΓ(G ,M ) ≃
(
M → Hom(Z[G ],M ) → Hom(Z[G ×G ],M ) → · · ·

)
.

Moreover, RΓ(G ,−) commutes with filtered colimits on D (Solid)G .

Proof. This follows from the facts that we have a natural equivalence of functors RHom(Z[S ],−) ≃
RHomS olid(Z[S ]■,−) on D (Solid) and that the functor HomS olid(Z[S ]■−, ) is an exact functor on Solid,
with Z[S ]■ being an internally compact projective object in Solid for any profinite set S . □

The following lemma is a special case of condensed group cohomology with solid-nuclear coefficients.

1.3.5 - Lemma. Let G be a profinite group. Let K0 ⊂ K be a p-adic local subfield. For any V ∈ ModnucK0
with

trivial G -action and any B ∈ ModnucK0
∩ModcondK0 [G ] , there is a natural isomorphism

V ⊗■K0
RΓ(GK ,B)

≃→ RΓ(GK ,V ⊗■K0
B).

We remark that this remains true in a more genral setting: we still have this isomorphism for solid-nuclear

V ∈ D (Mod■K0
), which are characterised by the property H i (V ) ∈ ModnucK0

for all i ∈ Z, and for general

B ∈ D (Mod■K0 [G ]) [11, Proposition 13.14]6.

Proof. SinceV is flat for ⊗■F , it suffices to see that the natural morphism suffit de voir que le morphisme naturel

V ⊗■F Hom(Z[G •],B) → Hom(Z[G •],V ⊗■F B)

is an isomorphism. According to [8, Theorem A.43 (i)], V ⊗■FW is still solid-nuclear, so by characterisation of

nuclear objects as trace-class functors [8, Proposition A.55 (i)], we have both natural vertical isomorphisms in

the following commutative diagram

V ⊗■F Hom(Z[G •K ],B) Hom(Z[G •K ],V ⊗■F B)

V ⊗■F Hom(Z[G •K ],F ) ⊗■F B Hom(Z[G •K ],F ) ⊗■F V ⊗■F B .

≃

≃

≃

6The proof of loc. cit. actually works for S = GK by the compact projectivity of Z[GK ]•.
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Now, we can conclude. □

In the particular case of profinite groups 𝜄 : G ≃ Znp (often non canonically isomorphic), its condensed

group cohomology can be computed alternatively by the Koszul complex, determined naturally though not

canonically by the isomorphism 𝜄.

1.3.6. Let M ∈ CondAb and f1, . . . , fn ∈ EndC ondAb(M ). Its Koszul complex is the complex

KoszM ( f1, . . . , fn) := Tot

(
M ⊗f ,Z[X1,...,Xn ]

n⊗
i=1

(Z[X1, . . . ,Xn]
·Xi→ Z[X1, . . . ,Xn])

)
with first R sitting in degree 0 and the second sitting in degree 1, where M is regarded as a Z[X1, . . . ,Xn]-
module via the map Z[X1, . . . ,Xn] → EndC ondAb(M ),Xi ↦→ fi .

1.3.7 - Proposition. Let G be a profinite group with an isomorphism 𝜄 : G ≃ Znp , and let 𝛾1, . . . , 𝛾n denote the

associated canonical (topological) generators of G , transported via i from those of Znp . For any M ∈ D (Mod■Zp )
G , the

condensed group cohomology is computed by the following Koszul complex

(1.3.7.1) RΓ(G ,M ) ≃ KoszM (𝛾1 − 1, . . . , 𝛾n − 1).

The identification depends on 𝜄, and is compatible with changing the isomorphism 𝜄 (which amounts to changing

generators).

Proof. We have a projective resolution Tot
(⊗■

Zp
n

i=1
(Zp [G ]■

· [𝛾i ]−id→ Zp [G ]■)
)
→ Zp → 0 in Mod■Zp , where the

first Zp [G ]■ sits in the degree −1 and the second sits in the degree 0. Taking R HomMod■Zp [G ]
(−,M ), using that

R HomMod■Zp [G ]
(Zp [G ]■,−) ≃ R HomZp [G ] (Zp [G ],−) ≃ id on Mod■Zp [G ] , we obtain the statement. □

We have the following relation between the two identifications.

1.3.8 - Lemma. Let Γ ≃ Znp be a profinite group with associated generator 𝛾1, . . . , 𝛾n , and M ∈ Mod■Zp [Γ] . Then

the composite identification H 1 Hom(Z[Γ•],M ) ≃ H 1 (Γ,M ) ≃ H 1KoszM (𝛾1 − 1, . . . , 𝛾n − 1) agrees with the map
(𝛾∗1 , . . . , 𝛾∗n) : Hom(Z[Γ],M ) → M ⊕n restricted to cocycles, where 𝛾∗i is induced by Z[∗] → Z[Γ] sending the
point to 𝛾i . More precisely, evaluated at a point, the class of a cocycle c̄ gets identified with the class of the element

mc̄ := (c̄ (𝛾1), . . . , c̄ (𝛾d )).

Proof. Since M (S ) ≃ Hom(Z[S ],M )(∗) for any profinite set S , we only need to prove the statement evaluated

at a point.

Denote by Γ′ a copy of Γ for the Koszul construction, and 𝟋 (read as "digamma") another copy for the

continuous cochain complex construction. We have quasi-isomorphisms of genuine complexes

KoszZp [Γ′ ]■ (𝛾1 − 1, . . . , 𝛾n − 1) Zp

Tot
(
KoszZp [Γ′×𝟋•+1 ]■ (𝛾1 − 1, . . . , 𝛾n − 1)

)
Z[𝟋•+1]■

≃

≃

≃

≃

in Mod■Zp [Γ] , inducing after R HomMod■Zp [Γ]
(−,M ) the quasi-isomorphisms genuine complexes

(1.3.8.1)

KoszM (𝛾1 − 1, . . . , 𝛾n − 1) RΓ(Γ,M )

Tot
(
KoszHomZ[Γ] (Z[Γ′×𝟋•+1 ],M ) (𝛾

′
1 − 1, . . . , 𝛾′n − 1)

)
HomZ[Γ] (Z[𝟋•+1],M )

≃𝛼′

≃

≃

≃
𝛼′′
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in Mod■Zp . We are going to show that 𝛼′ (mc̄ ) − 𝛼′′ (c̄ ) is a coboundary in the total complex

Consider the following upper right pieces

(1.3.8.2)

HomZ[Γ] (Z[Γ′],M )⊕n HomZ[Γ] (Z[Γ′],M )

HomZ[Γ] (Z[Γ′ × 𝟋],M )⊕n HomZ[Γ] (Z[Γ′ × 𝟋],M )

. .
.

HomZ[Γ] (Z[Γ′ × 𝟋2],M ) HomZ[Γ] (Z[𝟋2],M )

HomZ[Γ] (Z[𝟋3],M )

𝛼′ :=p ′∗

(𝛾∗i −1)ni=1
p ′∗

d ′ :=(𝛾′i ∗−1)ni=1

d ′′=p∗1 −p
∗
0

𝛼′′ :=p ′′∗

𝛿

of (1.3.8.1), or equivalently

(1.3.8.3)

M ⊕n M

M (𝟋)⊕n M (𝟋)

. .
.

M (𝟋2) M (𝟋)

M (𝟋2)

𝛼′ :=const
(𝛾i−1)ni=1

const

d ′ :=(𝛾i ◦𝛾−1i
∗−1)ni=1

d ′′=p∗1 −p
∗
0

𝛼′′ (c̄ )=c

id

𝛿

if we kill the Γ-action by reducing the respective first components to the unit 1 ∈ Γ. We write with a bar

f̄ ∈ M (Γ•) of the de-Γ-equivaried function of a Γ-equivariant function f ∈ HomZ[Γ] (Z[Γ•+1],M ).

Consider the identity map of M (𝟋) fitting as the dashed arrow into the diagram (1.3.8.3). It is a direct

computation to check that

𝛼′′ = d ′′ + 𝛿

on M (𝟋), and
d ′ f̄ (g ) = (− f̄ (𝛾i ) + 𝛿 f̄ (𝛾i , 𝛾−1i g ))ni=1

for f̄ ∈ M (𝟋). In particular, for any cocycle c̄ ∈ Z 1M (𝟋•) = ker 𝛿 ⊂ M (𝟋), if we view it in degree 0 (upper

right corner) of the total complex and apply the differential d = d ′ + d ′′, we obtain

dc̄ =
(
−(constc̄ (𝛾i ) )ni=1 + (𝛿c̄ (𝛾i , 𝛾

−1
i g ))ni=1,𝛼

′′ (c̄ ) − 𝛿c̄
)
= (−𝛼′ (mc̄ ),𝛼′′ (c̄ )) ∈ M (𝟋)⊕n ⊕M (𝟋2),

thus proving the identification. □

1.3.9 - Remark. In fact, conversely, for any m = (m1, . . . ,mn) ∈ M (∗)⊕n such that (𝛾i − 1)m j = (𝛾 j − 1)mi ,
there exists a cocycle c̄m such that c̄ (𝛾i ) = mi for i = 1, . . . ,n. One needs to prove certain explicit formula

defines really an element c̄ ∈ M (Γ). For this, using compact projective generation of Mod■Zp [G ] , one can

reduce to the case where M is of the form M = Zp [Γ]■ ⊗■Z Z[S ]■ ≃ Zp [Γ × S ]■, in which the verification

is direct. Alternatively, admitting the identification of the lemma, one can argue that there exists an element

m0 ∈ M (∗) such that m + dm0 comes from a cocycle c̄ , i.e. mi + 𝛾im0 − m0 = c̄ (𝛾i ) for i = 1, . . . ,d , but now

mi = (c̄ − 𝛿m0) (𝛾i ) where 𝛿 is the zeroth differential of the cochain complex M (Γ•).

1.3.10. Galois cohomology. Now we study examples of condensed Galois cohomology, whose computation has

essentially been done in the classical continuous cohomology context. We record these results and interpretate
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them in the condensed language.

Let M ∈ D (ModcondK ). Consider C = K̂ with its natural continuous GK -action as an object of

D (ModcondK )GK concentrated in degree 0. We have a canonical morphism M → M ⊗LK C in D (ModcondK )GK ,
inducing the morphism D (ModcondK )

M → RΓ(GK ,M ⊗LK C ) = (M ⊗LK C )
GK

functorial in M . We may also replace C by other objects dans D (ModcondK )GK .

Here is a solid variant. The advantage of working in the solid world D (Mod■K ) is that C becomes now a

flat object for ⊗■K , whence the natural isomorphismM ⊗L■K C ≃ M ⊗■KC . Then we get the natural transformation

D (Mod■K ) → D (Mod■K ), − → (− ⊗■K C )
GK .

Here is a noncompleted version. The object K is flat already for nonsolid ⊗K , hence M ⊗LK K ≃ M ⊗K K
and we get the natural transformation

D (ModcondK ) → D (ModcondK ), − → (− ⊗K K )GK .

1.3.11 - Example. Let’s review some examples of Galois cohomology. Let i ∈ N, j ∈ Z.

(i) Tate calculated

H i
cont (GK ,C ( j )) ≃


K , j = 0,i = 0,

K log 𝜒 cyc, j = 0,i = 1,

0, otherwise,

from which we deduce the same formula for H i
cont (GK ,B+dR ( j )). There is a generalised version calculating

H i (GK ,W ⊗■K C ( j )) forW ∈ ModcondK a K -Banach space, a (classical) nuclear Fréchet K -vector space,

or a K -vector space of compact type equipped with a trivial GK -action.

(ii) By adding a variable log t with action g (log t ) = log t + log
(
𝜒 cyc(𝜎)

)
, one obtains the computation [?]

H i (GK ,W ⊗■K C [log t ] ( j )) ≃
{
W, j = 0,i = 0,

0, otherwise,

forW ∈ ModcondK a K -Banach space or a (classical) nuclear Fréchet K -vector space with trivial GK -action;

similarly, one has

H i (GK ,W ⊗■K B+dR [log t ] ( j )) ≃ H
i (GK ,W ⊗■K BdR [log t ] ( j )) ≃

{
W, j = 0,i = 0,

0, otherwise,

for the sameW ∈ ModcondK .

We denote

B+pdR := B+dR [log t ], BpdR := BdR [log t ] ≃ B+pdR ⊗
■
B+dR

BdR

with g (log t ) = log t + log 𝜒 cyc (g ).

1.3.12. Discrete condensed objects. For M ∈ Cond(Set), we denote by M 𝛿 := M (∗)disc, or equivalently

M 𝛿 (S ) := lim−−→S↠Si
M (Si ). There is a natural continuous map M (∗)disc → M (∗)top underlying the morphism

M 𝛿 → M ; we say that M is discrete if it is an isomorphism. The functor (−)𝛿 : Cond(Set) → Cond(Set)
preserves all limits and colimits.

1.3.13 - Definition. Let S be a profinite set. Let M ∈ CondAb. We define

(1.3.13.1) Homsm (S ,M ) = Hom(S ,Z) ⊗Z M ∈ CondAb
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as the condensed group of locally constant functions from S to M . We denote Homsm (S ,M ) := Homsm (S ,M )(∗).

1.3.14 - Lemma. Let S be a profinite set and M ∈ CondAb.

(i) There is a natural map Homsm (S ,M ) → Hom(S ,M ).
(ii) We have Homsm (S ,M ) = lim−−→i

M Si , in particular for any extremally disconnected set T , we have

Homsm (S ,M )(T ) = lim−−→i
Hom(Si ,M (T )); in other words, we have Homsm (S ,M ) = M 𝛿 (S ), or more gen-

erally, Homsm (S ,M )(T ) = Hom(T ,M )𝛿 (S ). The map in (i) corresponds to the colimit of natural maps
Hom(Si ,M (T )) = M (Si ×T ) → M (S ×T ); in particular, it is injective.

(iii) If M is discrete, then Homsm (S ,M ) ≃→ Hom(S ,M ).

Proof. (i) The natural map is clear by remarking that M = Hom(Z,M ).

(ii) For extremally disconnected sets T , we have Hom(S ,Z)(T ) = Z(S ×T ) = lim−−→i ,j
Z(Si ×T j ), hence

Hom(S ,Z) = lim−−→
i

ZSi

and by tensoring with M , we obtain

Homsm (S ,M ) = lim−−→
i

ZSi ⊗Z M = lim−−→
i

M Si .

Evalued on extremally totally disconnected sets T , this is

Homsm (S ,M ) (T ) = lim−−→
i

M Si (T ) = lim−−→
i

Hom(Si ,M (T )).

We know that Hom(S ,M )(T ) = M (S ×T ), hence there are maps M (Si ×T ) → M (S ×T ), and the above

map is identified its colimit.

(iii) If M is discrete, then M (S ×T ) = lim−−→i ,j
M (Si ×T j ) = lim−−→i

M (Si ×T ). □

1.3.15. Smooth group action. Let G be a profinite group. Let M be an object of ModcondZ[G ] . We say that the

G -action on M is smooth if the map M → Hom(G ,M ) factors through

(1.3.15.1) M → Homsm (G ,M ) ↩→ Hom(G ,M )

where the injectivity is due to (1.3.14, ii). We denote by ModsmZ[G ] the full subcategory of ModcondZ[G ] consisting of

condensed abelian groups with smooth G -action and D sm (ModcondZ[G ]) := D (ModsmZ[G ]). In the solid situation,

we denote Mod■,smZ[G ] := Mod■Z[G ] ∩ ModsmZ[G ] and D sm (Mod■Z[G ]) := D (Mod■,smZ[G ]). The categories ModsmZ[G ]
and Mod■,smZ[G ] are Grothendieck abelian categories with generators Z[S ×G /H ] for profinite sets S and open

subgroups H ≤ G .

By design, ModsmZ[G ] ⊂ ModcondZ[G ] is stable under all colimits and solidification. Indeed, it is clear from

(1.3.15.1) and (1.3.14, ii). Deriving it, we obtain a strictly commutative diagram of functors

(1.3.15.2)

D sm (ModcondZ[G ]) D (ModcondZ[G ])

D sm (Mod■Z[G ]) D (Mod■Z[G ]).

(−)L■ (−)L■

1.3.16 - Lemma. LetG be a profinite group. The fully faithful embedding functor ModsmZ[G ] ⊂ ModcondZ[G ] has a right

adjoint, which is given by

(1.3.16.1) M ↦→ MG−sm := M ×Hom(G ,M ) Hom
sm (G ,M ).
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More concretely, for any profinite set S , the setMG−sm (S ) consists of m ∈ M (S ) such that its orbit orbm ∈ M (G ×S )
comes from the subset M (Gi × S ) for some finite quotient Gi of G .

Proof. The natural projection map 𝜄 : MG−sm → M is injective by (1.3.14, ii). The right translation action

r : G × G → G , (g1, g2) ↦→ g2g1 induces a G -action on Hom(G ,M ) and on Homsm (G ,M ) compatible with

the G -action on M ; indeed, for the latter, we need to check that the subobject Homsm (G ,M ) ⊂ Hom(G ,M )
is stable under this G -action, but this follows from the expression (1.3.13.1). As a result, there is a natural

induced G -action on MG−sm making 𝜄 a G -equivariant map. Now let us show that the G -action on M is

smooth. For this, the coaction map MG−sm → Hom(G ,MG−sm) lands in Homsm (G ,M ) ∩ Hom(G ,MG−sm) =
Homsm (G ,MG−sm).

Finally about the adjunction statement: for any N1 ∈ ModsmZ[G ] and N2 ∈ ModcondZ[G ] , any G -equivariant map

N1 → N2 factors uniquely as N1 → N G−sm
2 ⊂ N2 by factorisation property in definition (1.3.15) and the above

injectivity. □

1.3.17 - Lemma. Let G be a profinite group. For any M ∈ ModcondZ[G ] , we have

MG−sm ≃ lim−−→
H

H 0 (H ,M )

where H runs over the filtered system of all open normal subgroups of G .

Proof. Let H be an open normal subgroup of G acting on M via restriction 𝜌H : M → Hom(H ,M ). We have

Hom(G /H ,M ) ≃ ker(m∗ − pr∗1 : Hom(G ,M ) → Hom(G ×H ,M )) over Hom(G ,M ), induced from the colimt

diagram colim(m,pr1 : G ×H → G ) ≃→ G /H with compatible maps from G (e.g. (id,eG ) : G → G ×H ), hence

M ×Hom(G ,M ) Hom(G/H ,M ) ≃ ker(𝜌H − const : M → Hom(H ,M )) ≃ H 0 (H ,M ).

Here, we used that

m∗,pr∗1 : M ≃ M ×Hom(G ,M ) Hom(G ,M ) → M ×Hom(G ,M ) Hom(G ×H ,M ) ≃ Hom( G ×H
G × {eG }

,M )

where G×H
G×{eG } is the quotient topological space, and that they both factors through the subobject Hom(H ,M ).

We conclude by taking colimits over H (1.3.16.1). □

1.3.18. Let (−)RG−sm : D (ModcondZ[G ]) → D sm (ModcondZ[G ]) denote the right derived functor of (−)G−sm. Then

(1.3.17) implies that

M RG−sm ≃ lim−−→
H

RΓ(H ,M )

for M ∈ D (ModcondZ[G ]), where H runs over the filtered system of all open normal subgroups of G .

Taking right adjoints of the commutative diagram (1.3.15.2), we find that (−)G−sm and (−)RG−sm restrict to

functors on corresponding solid objects.

1.3.19 - Lemma. Let G be a profinite group and M ∈ CondAb. Let G act trivially on M and by right translation

on G . Then we have a natural isomorphism

Homsm (G ,M ) ≃ Hom(G ,M )G−sm.

Proof. For T profinite set, the map Hom(G ,M ) → Hom(G ,Hom(G ,M )) ≃ Hom(G ×G ,M ) is induced by the

multiplication map m : G (1) ×G (2) → G (2) , (g1, g2) ↦→ g2g1, where G (1) and G (2) are two copies of G . We have

for extremally disonnected

Homsm (G (1) ,Hom(G (2) ,M )) (T ) = lim−−→
i

Hom(G (1)i ,Hom(G (2) ,M ) (T )) = lim−−→
i

M (G (1)i ×G (2) ×T ),
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so
Hom(G ,M )G−sm (T ) = M (G (2) ×T ) ×M (G (1)×G (2)×T ) lim−−→

i

M (G (1)i ×G (2) ×T )
≃ lim−−→

i

M (G (2)i ×T )
= Homsm (G (2) ,M ) (T ).

Here, for the second to last identification, we used the following commutative diagram

M (G (2) ×Gi G (2) ×T ) M (G (2) × (G (1) ×Gi G (1) ) ×T )

M (G (2) ×T ) M (G (2) ×G (1) ×T )

M (G (2)i ×T ) M (G (2) ×G (1)i ×T )

m∗

pr∗1 −pr
∗
2

m∗

pr∗1 −pr
∗
2

m∗

with exact columns, to get a unique map M (G (2) ×T ) ×M (G (1)×G (2)×T ) M (G
(1)
i ×G (2) ×T ) → M (G (2)i ×T )

making the diagram commutative, whence it is an isomorphism. □

1.3.20. Smooth group cohomology. Let G be a profinite group. We define the smooth group cohomology

functor of G as the right derived functor RΓsm (G ,−) : D sm (ModZ[G ]) → D (CondAb) of HomZ[G ] (Z,M ),
which is right adjoint to the trivial action functor; similarly in the solid situation, we define by abuse of

notation RΓsm (G ,−) : D sm (Mod■Z[G ]) → D (Solid).

For M ∈ D sm (Mod■Z[G ]) with image M ′ in D sm (ModcondZ[G ]), there is no ambiguity, since RΓsm(G ,M ) has
image RΓsm (G ,M ′) in D (CondAb). Indeed, this is because we have a strict commutative diagram of functors

D (CondAb) D sm (ModcondZ[G ])

D (Solid) D sm (Mod■Z[G ])

(−)L■

(−) triv

(−)L■

(−) triv

where the right solidification functor is well-defined by (1.3.15).

1.3.21. Let G be a profinite group. Consider the sequence of morphisms CondAb
(−) triv→ ModsmZ[G ] ↩→ ModcondZ[G ] ,

which preserve colimits and finite limits. Taking their right adjoints, which thus preserve injective objects, we

obtain

RΓ(G ,−) ≃ RΓsm (G , (−)RG−sm).

1.3.22 - Lemma. Let G be a profinite group. For M ∈ D sm (Mod■Z[G ]) and S profinite set, RΓsm (G ,M ) (S ) ≃
RΓ(G ,M (S )) where the latter computes the usual profinite group cohomology of the smooth G -representation M (S ).

In particular, if M has a Q-linear structure, then RΓsm (G ,M ) (S ) is represented by (M •S )
G for whichever

Q-linear complex M •S representing M (S ).

Proof. The first statement is [41, Lemma 3.4.15] (cf. [17, Remark 4.28] for a classical but more restrictive

explanation) and the last is due to vanishing of higher cohomology groups of profinite group cohomology of

smooth representations over Q. □

1.3.23 - Proposition. Let G be a profinite group. For any M ∈ Mod■,smZ[G ] , the smooth group cohomology is computed

by the smooth cochain complex

RΓsm (G ,M ) ≃
(
M → Homsm (G ,M ) → Homsm (G ×G ,M ) → · · ·

)
.

Proof. This is [41, Corollary 3.4.17]. □
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1.3.24 - Corollary. For M ∈ Mod■,smZ[G ] , we have

H 0
sm (G ,M ) = H 0 (G ,M ).

Proof. This is due to (1.3.23) and the factorisation M → Homsm (G ,M ) ↩→ Hom(G ,M ) for M ∈ CondAb

(1.3.15). □

The following lemma explains the relation between classical continuous and condensed group actions.

1.3.25 - Lemma. Let G be a profinite group and M ∈ D (CondAb) be a discrete object.

(i) Any condensed G -action on M is smooth and is uniquely determined by the underlying G -action on M (∗),
which is smooth.

(ii) Conversely, any smooth G -action on M (∗) extends to a condensed G -action on M .

Proof. (i) The smoothness of the G -action on M is clear from (1.3.14, iii).

We want to reconstruct natural G (S )-actions on M (S ) or equivalently

M (S ) → M (G × S )

from the G -action on M (∗), which can be interpretated as M (∗) → M (G ) = lim−−→n
M (Gn); hence every

m ∈ M (∗) has open stabliser in G , so that the G -action on M (∗) is smooth. We know M (S ) = lim−−→i
M (Si ) by

discreteness. So

M (S ) → M (G × S )

is identifies as

lim−−→
i

M (Si ) → lim−−→
i ,n

M (Gn × Si )

which agrees with

lim−−→
i

(
M (Si ) → lim−−→

n

M (Gn × Si )
)
= lim−−→

i

(
M (∗) → lim−−→

n

M (Gn)
)Si

.

The map in the last parenthesis is the same as M (∗) → M (G ) by discreteness of M .

(ii) Conversely, if the action of G on M (∗) is smooth, then the action is described by a morphism

M (∗) → lim−−→n
M (∗)Gn = lim−−→n

M (Gn). Hence we may use the formula in the proof of (i) to define its (unique)

extension to an G -action on M . □

1.4 Condensed cohomology theories

As pointed out in (1.2.8), we need to put condensed structures on cohomology theories in p-adic geometry. We

start with the p-adic (pro)étale cohomology.

1.4.1. (Pro)étale cohomology. Let X be an analytic adic space over Spa(Qp ,Zp ). We define the proétale

site of X as Xproét := X ⋄qproét the quasi-proétale site of the diamond associated to X , with canonical projection

𝜈 : Xqproét → Xét to the étale site, with associated morphisms of topos (𝜈∗, 𝜈∗). We are interested in (pro)étale

cohomology of (complexes of) sheaves of R-modules on X , where R ∈ {Z/pn ,Zp ,Qp }.

(i) For any F ∈ X ∼ét , we have equivalences F ≃→ R𝜈∗𝜈∗F [51, Proposition 14.8], hence RΓét (X ,F) ≃
RΓproét (X , 𝜈∗F), which verifies proétale hyperdescent.

(ii) For any étale Zp -local system L = (L/pn)n∈N on X with completion L̂ := limn 𝜈
∗ (L/pn) on Xproét, we

define

RΓét (X ,L) := R lim
n
RΓét (X ,L/pn).
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Then we have

(1.4.1.1)
RΓét (X ,L) ≃ R lim

n
RΓproét (X , 𝜈∗ (L/pn))

≃ RΓproét (X ,R lim
n

𝜈∗ (L/pn)) ≃← RΓproét (X , L̂),

where the second isomorphism follows from the fact that R limn and RΓproét commute, the last isomor-

phism follows from the vanishing Ri limn 𝜈
∗ (L/pn) = 0; indeed, by [50, Lemma 3.18], we may reduce it

to checking that for totally disconnected perfectoid spaces U over X , we have R1 limn H 0 (U ,Z/pn) = 0

and H i (U ,Z/pn) = 0 for i > 0, which are clear.

(iii)

1.4.2. Two condensed structures on proétale cohomology. Let X be an analytic adic space over

Spa(Qp ,Zp ) with canonical projection morphism fproét : Xproét → ∗proét = ProF in to the proétale site of

a point.

We have two versions of condensed proétale cohomology on X :

(i) For F ∈ D (Shv(Xproét,Ab)), we may define the pushforward to the proétale of a point RΓproét (X ,F) :=
Rfproét∗F ∈ D (Shv(∗proét,Ab)) ≃ D (CondAb) ≃ Shvhyp (∗proét,D (Ab)); more precisely, we have

RΓproét (X ,F) (S ) = RΓ(Xproét/X ×S ,F) ≃ RΓproét (X × S ,F)

for any profinite set S .

(ii) We have Shv(Xproét,Ab) → Shv(Xproét,CondAb) ≃ Shv(Xproét × ∗proét,Ab) sending F to F : U ↦→
(S ↦→ F (U × S )), which by (1.1.8, i) is further identified with the pushforward 𝜇∗F along the morphism

of sites

𝜇 : Xproét → Xproét × ∗proét.

Then, for F ∈ Shv(Xproét,Ab), we define the object RΓproét (X ,F) ∈ D (CondAb) ≃
Shvhyp (∗proét,D (Ab)) as the global section with condensed coefficients; more precisely, we have

RΓproét (X ,F) (S ) ≃ RΓ((Xproét × ∗proét)/X ×S , 𝜇∗F)

for any profinite set S .

The first is very general, while the second restricts to static sheaves (i.e. sheaves concentrated in degree 0)

due to lack of exactness of 𝜇∗: the pushforward 𝜇∗ for sheaves is not necessarily exact, hence R𝜇∗ does not

degenerate.

Though not equivalent to each other, two points of view are related for F ∈ Shv(Xproét,Ab). Since

the composite morphism of sites Xproét
𝜇→ Xproét × ∗proét

pr1→ ∗proét agrees with fproét, we have RΓ((Xproét ×
∗proét)/X ×S , 𝜇∗F) ≃ RΓproét (X ,F), whence an evident natural map RΓproét (X ,F) → RΓproét (X ,F), whose
obstruction of being an isomorphism lies in Ri 𝜇∗F for i > 0.

1.4.3. Disambiguation of two condensed structures. Let X be an analytic adic space over Spa(Qp ,Zp ). We

give instances of F ∈ Shv(Xproét,Ab) such that Ri 𝜇∗F = 0 for i > 0, so that by (1.4.2), there is a natural

equivalence

(1.4.3.1) RΓproét (X ,F) ≃→ RΓproét (X ,F)

in D (CondAb). In the following examples, we will actually prove that

(1.4.3.2) H i
proét (U × S ,F) = 0, i > 0

for sufficiently "small" strictly totally disconnected perfectoid spaces U over X and all extremally disconnected
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sets S ; then U × S is also a strictly totally disconnected perfectoid space [51, Lemma 7.19], i.e. being a

quasi-compact perfectoid space whose all étale covers split.

(i) Let F = 𝜈∗F pulled back from an étale sheaf F on X . Then (1.4.3.2) holds as we have H i
proét (U ×S ,F) ≃

H i
ét (U ,F ) = 0 if i > 0 by splitting of étale covers of U .

(ii) Let F be a proétale Zp -local system on X . Then (1.4.3.2) holds for sufficiently "small" strictly totally

disconnected U , in the sense that F |U ≃ Znp is trivialised. We may assume F = Ẑp := limn 𝜈
∗ (Z/pn).

Now H i
proét (U × S , 𝜈∗ (Z/pn)) vanishes if i > 0, and is, if i = 0, equal to Cont(

��U × S ��,Z/pn) the
set of locally constant functions on the underlying topological space U × S with values in Z/pn . So

(H i
proét (U × S ,Z/pn))n∈N forms a Mittag-Leffler system. Therefore,

(1.4.3.3) H i
proét (U × S ,Zp ) ≃ lim

n
H i

proét (U × S , 𝜈∗ (Z/pn)) ≃
{

Cont(|U × S |,Zp ), i = 0,

0, i > 0,

where Zp is endowed with its natural p-adic topology.

(iii) Let F be a proétale Qp -local system on X . Then (1.4.3.2) holds for sufficiently "small" strictly totally

disconnected U , in the sense that F |U ≃ Qn
p is trivialised. Recall that Qp := Ẑp [ 1p ] = colimp · Ẑp . Then

H i
proét (U ×S ,Qp ) ≃ colimp · H i

proét (U ×S ,Qp ) since proétale cohomology on qcqs spaces commutes with

filtered colimits (by coherence of the topoi (U ×S )∼proét ≃ (U ×S )
⋄,∼
qproét,qcqs). We conclude by (1.4.3.3) that

(1.4.3.4) H i
proét (U × S ,Qp ) ≃

{
Cont(

��U × S ��,Qp ), i = 0,

0, i > 0.

(iv) Let F = ÔX or F ∈ {BI ,B,Blog,Blog [ 1t ],B+dR/Fil
m ,B+dR,BdR} be a proétale period sheaf, then (1.4.3.2)

holds for sufficiently "small" U , in the sense that U is an affinoid perfectoid space over Spa(Cp ,OCp ), by
[8, Proposition 4.7] and [?, Proposition 2.37].

In conclusion, let F ∈ Shv(Xproét,Ab) be the pullback of an étale sheaf on X , be a proétale Zp - or Qp -local

system, or belong to {ÔX ,BI ,B,Blog,Blog [ 1t ],B+dR/Fil
m ,B+dR,BdR}, then:

(v) The equivalence (1.4.3.1) holds.

(vi) We have RΓproét (U ,F) ∈ D (Solid) for sufficiently "small" U , even that RΓproét (U ,F) concentrated in

degree 0 is a Qp -Banach space if F ∈ {Qn
p ,ÔX ,BI ,B+dR/Fil

m} and is a Qp -Fréchet space if F ∈ {B,B+dR}.
(vii) By descent and stability of solidness under all limits and colimits, we obtain RΓproét (X ,F) ∈ D (Solid);

furthermore, RΓproét (X ,F) is represented by a complex of Qp -Banach spaces if F is a Qp -local system

or F ∈ {Qn
p ,BI ,B

+
dR/Fil

m}, by a complex of Qp -Fréchet spaces if F ∈ {B,B+dR}, whence by a complex of

solid-nuclear Qp -vector spaces in both cases.

1.4.4. The étale cohomology of qcqs objects is discrete. Let F = 𝜈∗F pulled back from an étale sheaf F

on X . Then by [51, Proposition 11.23, Proposition 14.9], for any profinite set S = lim←−−i Si , we have RΓproét (X ×
S , 𝜈∗F ) ≃ lim−−→i

RΓproét (X × Si , 𝜈∗F ) ≃ lim−−→i
RΓproét (X , 𝜈∗F )Si ≃ lim−−→i

RΓét (X ,F )Si , hence

RΓproét (X ,F) ≃ RΓét (X ,F )disc

is classic and discrete, i.e. being the condensification of RΓét (X ,F ) ∈ D (Ab) endowed with the discrete

topology. We define RΓét (X ,F ) := RΓproét (X ,F).

1.4.5 - Proposition (Hochschild-Serre spectral sequence). Let G be a profinite group and X̃ → X a proétale

G -torsor of analytic adic spaces over Spa(Qp ,Zp ). Let F ∈ Shv(Xproét,Qp ) such that F |X̃ is G -equivariant. Then
we have a natural equivalence

RΓproét (X ,F) ≃ RΓ(G ,RΓproét (X̃ ,F))

in D (Solid).
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Proof. First, we have RΓproét (X ,F) ≃ limΔRΓproét (X̃ ×G
×•,F) by proétale descent along the ech hypercovering

of the G -torsor and G -equivariance of F |X̃ .

There is an isomorphism

RΓproét (X̃ ×G
×n ,F) ≃ R Hom(Z[G ×n],RΓproét (X̃ ,F)).

Indeed, for n ∈ N and profinite sets S , there are isomorphisms

RΓproét (X̃ ×G
×n ,F) (S ) = RΓproét (X̃ ×G ×n × S ,F)

≃ RΓproét (X̃ ,F)(G ×n × S )
≃ R Hom(Z[G ×n × S ],RΓproét (X̃ ,F))
≃ R Hom(Z[S ],R Hom(Z[G ×n],RΓproét (X̃ ,F)),

where we used Z[G ×n × S ] ≃ Z[G ×n] ⊗Z Z[S ] ≃ Z[G ×n] ⊗LZ Z[S ] concentrated in degree 0 for the last

isomorphism, Z[S ] being flat, and the second to last follows from the definition of Z[−]7.

Next, recall that RΓproét (X̃ ,F) ∈ D (Solid) (1.4.3, vii), and that Z[S ]L■ ≃ Z [S ]■ [0] is compact projective

in D (Solid) for any profinite set S (not only the extremally disconnected ones). But we have

R Hom(Z[G ×n],M ) ≃ R HomD (Solid) (Z[G
×n]L■,M ) ≃ HomD (Solid) (Z[G

×n]•,M ) ≃ Hom(Z[G ×n],M )

for M ∈ D (Solid), whence

R Hom(Z[G ×n],RΓproét (X̃ ,F)) ≃ Hom(Z[G ×n],RΓproét (X̃ ,F)).

Finally, it remains to identify the differentials in the condensed group cohomology and the total complex

of the Čech cosimplicial nerve. □

1.4.6. Notation. We will often remove for simplicity the underline in the notation RΓproét (X ,F) if the context
permits, while keeping that in RΓproét (X ,F). Since in most cases that we will encounter they even agree with

each other, there will be no harm of it.

Next, we pass to log-crystalline cohomology, keeping in mind the intuition that étale cohomology of

(pn-torsion) sheaves ought to take discrete values on qcqs objects (1.4.4).

1.4.7. Condensed log-crystalline cohomology. Let us recall some basics on log-crystalline cohomology; for

details, cf. [4, §1].

First, let S ♯ = (S ,L,I , 𝛾) be a quasi-coherent log pd-scheme with p ∈ OS is nilpotent, and (Z ,MZ ) be an
integral and quasi-coherent log-scheme over S ♯. Let ((Z ,MZ )/S ♯)cris be the log-crystalline site of (Z ,MZ )
over S ♯, whose objects are (U ,T ) with U is an étale scheme over Z with pullback log-structure MU , and

T = (T ,MT ) is a pd-S ♯-thickening of (U ,MU ) with defining pd-ideal IY ⊂ OT , and whose coverings are

étale ones. We may simplify the notation to (Z /S ♯)cris or even (Z /S )cris if the context permits. The site

((Z ,MZ )/S ♯)cris has a structure sheaf OZ /S ♯ : (U ,T ) ↦→ Γ(T ,OT ), with pd-ideal sheaf IZ /S ♯ : (U ,T ) ↦→
Γ(T ,JT ); it has also has a sheaf G♮

m : (U ,T ) ↦→ Γ(T , (1 + IT ,×)) (note that IT ⊂ OT is a nil-ideal), and

a mononid sheaf MZ /S ♯ : (U ,T ) ↦→ Γ(T ,MT ). These sheaves take values in the category of abelian groups

(resp. commutative monoids), which we regard as condensed abelian groups (resp. condensed commutative

monoids) with discrete topology. By local discreteness of sheaves, many actions on them could be promoted to

7Let M • be a complex in D (CondAb) , the corresponding condensed object M ∈ Shvhyp (∗proét,D (Ab) ) is given by M (S ) :=
RΓ (S ,M • ) ∈ D (Ab) , which is represented by M • (S ) if S is extremally disconnected. By definition of free objects Z[−], we have

R Hom(Z[S ],M • ) ≃ R Hom(Z[S ],I • ) = I • (S ) for any injective resolution M •
≃→ I • in D (CondAb) ; but this is also the definition of

RΓ (S ,M • ) . Therefore R Hom(Z[S ],M • ) ≃ M (S ) .
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a condensed action. Then we define the condensed log-crystalline cohomology as

RΓcris ((Z ,MZ )/S ♯) := RΓcris (((Z ,MZ )/S ♯)cris,OZ /S ♯ ) ∈ D (CondAb).

The cocontinuous functor ((Z ,MZ )/S ♯)cris → Zét, (U ,T ) ↦→ U induces a canonical morphism of topoi

u log
Z /S ♯

: ((Z ,MZ )/S ♯)log,∼cris → Z ∼
ét such that

(u log ∗
Z /S ♯

G) (U ,T ) = G (U ), (u log
Z /S ♯∗F)(U ) := Γ((U /S ♯)cris,F).

We may shorten the notation u log
Z /S ♯

to u if there is no confusion.

Now we turn to the p-adic setting. Let S ♯ = (S ,L,I ) be an integral and quasi-coherent p-adic formal log

pd-scheme, or samely a sequence of exact closed embeddings of integral and quasi-coherent log pd-schemes

(S ♯
n)n∈N such that OSn = OSn+1/pn and In = In+1OSn . For (Z ,MZ ) an integral and quasi-coherent log-S ♯-

scheme, i.e. over S ♯
n for some n ∈ N, we define ((Z ,MZ )/S ♯)cris as the union of fully faithful embeddings of

(((Z ,MZ )/S ♯
n)cris)n∈N. We again have sheaves OZ /S ♯ , IZ /S ♯ , G

♮
m and MZ /S ♯ valued in condensed abelian

groups (resp. condensed commutative monoids) with discrete topology. We define the condensed (p-adic)

log-crystalline cohomology as

RΓcris ((Z ,MZ )/S ♯) := lim
n≫0

RΓcris (((Z ,MZ )/S ♯
n)cris,OZ /S ♯

n
) ∈ D (CondAb).

Again, we have a canonical morphism of topoi u log
Z /S ♯

: ((Z ,MZ )/S ♯)log,∼cris → Z ∼
ét .

1.4.7.1. Condensed infinitesimal cohomology. We put natural condensed structures on the infinitesimal

cohomologies defined in [31].

Let us first consider the arithmetic case. Let Z be a rigid space over K and consider the infinitesimal

site (Z/K )inf whose objects are pairs (U ,T ) such that U is an open subset of Z with a closed nil-immersion

U ↩→ T of rigid spaces over K , and whose coverings are open coverings. It has a structure sheaf OZ/K :

(U ,T ) ↦→ Γ(T ,OT ) with an ideal sheaf IZ/K , naturally promoted to a sheaf valued in CK but landing

furthermore in the subcategory of K -Fréchet spaces, which we regard as in Mod■K . We define the arithmetic

condensed infinitesimal cohomology as

RΓinf (Z/K ) := RΓ((Z/K )inf,OX /K ) ∈ D (Mod■K ).

It agrees with the éh-de Rham cohomology, which we denote by

RΓdR (Z/K ) := RΓ(Zéh,Ω
•
Z/K ,éh) ∈ D (Mod■K ).

For qcqs Z , it is represented by a bounded complex of Qp -Fréchet spaces (resp. of Qp -Banach spaces if Z is

smooth).

Similarly in the geometric B+dR-case, for any rigid space Z over C , we have the infinitesimal site

(X /B+dR)inf =
⋃
m (X /B+dR,m)inf, equipped with a structure sheaf OX /B+dR together with an ideal sheaf IX /B+dR .

They are naturally made to take values in Mod■B+dR
, so that we can define the geometric condensed infinitesimal

cohomology as

RΓinf (X /B+dR,m) := RΓ((X /B
+
dR,m)inf,OX /B+dR ) ∈ D (Mod■B+dR,m

)

and

RΓinf (X /B+dR) := lim
n
RΓinf (X /B+dR,m).

Most results in op. cit. can be upgraded to condensed statements.
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2 Arithmetic syntomic cohomology

It is unclear whether the original arithmetic Hyodo-Kato morphism [17, §4.2] for rigid-analytic varieties is

compatible with the geometric Hyodo-Kato morphism [19, §2]. Here, we prefer to make alternatively an ad hoc

definition of the arithmetic Hyodo-Kato morphism so that it satisfies by birth this compatibility. The key tool

is the Galois cohomology computation (1.3.11, ii).

2.0.1. Semistable formal schemes.

For p-adic admissible formal schemes over OK or OC , we denote by (−)𝜂 their rigid generic fibre in the

sense of adic spaces.

A (p-adic) formal scheme ℨ over K is called strictly semistable if, locally for the Zariski topology, it admits

an étale morphism to a formal scheme of the form

SpfOK ⟨X0, . . . ,Xm⟩ /(X0 . . .Xl −𝜛), 0 ≤ l ≤ m

for some uniformiser 𝜛 of OK . Let Lℨ be the integral closure of K in Γ(ℨ𝜂 ,Oℨ𝜂 ), called the splitting field of

ℨ𝜂 . If ℨ is connected, then Lℨ is a field, and OLℨ is the integral closure of OK in Γ(ℨ𝜂 ,Oℨ𝜂 ), and ℨ is strictly

semistable over OLℨ ; in general, ℨ is locally connected and we regard Lℨ as attaching the splitting field to

each connected component. Let Mss be the full subcategory of formal schemes over K that are semistable

over some finite extension L of K .

A (p-adic) formal scheme 𝔛 over C is called strictly semistable if, locally for the Zariski topology, it admits

an étale morphism to a formal scheme of the form

SpfOC ⟨X0, . . . ,Xm⟩ /(X0 . . .Xl −𝜛), 0 ≤ l ≤ m

for some 𝜛 ∈ OC \{0}. We denote by Mss
C the full subcategory of formal schemes over K that are semistable

over C . Let Mss,b
C be the full subcategory of formal schemes over K that are base change from a semistable

formal scheme over L for some finite extension of K .

The arithmetic and geometric setting are compatible by the base change functors

(2.0.1.1)

Mss
K RigSmK

Mss,b
C RigSmC

(−)ssOC

(−)𝜂

−⊗KC
(−)𝜂

where the left vertical map is defined as8

ℨss
OC

:=
∐

𝜎∈HomK (Lℨ,C )
ℨ ⊗OLℨ ,𝜎

OC .

There is a natural GK -action on ℨss
OC

by permuting the components 𝜎 ↦→ g −1𝜎 and meanwhile acting on the

coefficients OC ; this is compatible with the GK -action on ZC . One may replace Lℨ by any finite extension L/K
such that ℨ is semistable over L and obtain the same object.

Exceptionnally in this article, we will abbreviate strictly semistable to semistable.

2.0.2. We refer to [32, §2] for the notion of éh-topology, and to [3, 2.1] for the notion of Beilinson base.

By Temkin’s altered local uniformization [53], we see that the pair (Mss
K , (−)𝜂) is a Beilinson base for the

8Beware that ℨOC := ℨ⊗OK OC is a formal model of ZC , but is not semistable overOC in general, hence RΓHK (ZC ) is not isomorphic
to RΓcris (ℨ0

OC ,1
/O0

F̆
)Qp .
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site RigK ,éh, and (M
ss,b
C , (−)𝜂) is a Beilinson base for the site RigC ,éh [9, Proposition 3.10]; indeed, by [17,

Proposition 2.8] this is true for étale topology on smooth rigid spaces, but éh-locally we have smoothness [32,

Corollary 2.4.8]. Therefore, we can unfold a presheaf on the base to a hypersheaf by hyperdescent. In order to

obtain a reasonable sheaf, the presheaf should satisfy hyperdescent for sufficiently refined hypercoverings.

2.0.3 - Remark. When applying Temkin’s results in [53], one should be a little bit cautious: Temkin’s definition

of semistability is slightly more general than the usual semistability. A formal scheme over OK is called strictly

semistable (resp. semistable) à la Temkin if locally for the Zariski (resp. étale) topology, it admits an étale map to

the standard semistable formal scheme

𝔖n,r := Spf (OK {X0, . . . ,Xn}/(X0 · · ·Xr −𝜛n)) , 1 ≤ r ≤ n,

over OK , where 𝜛 is a uniformizer of K and n ∈ N. By contrast, the usual (strict) semistability requires n = 1.

These are different notions because the above standard semistable formal scheme is not regular if n ≥ 2.

Nevertheless, when we work locally for the 𝜂-étale topology, we can always assume n = 1 by further

localisation. Indeed, we may proceed as in the proof of [53, Lemma 2.4.1], in particular its step 2: consider

fi : 𝔖n,r → 𝔖n−1,r induced by

X j ↦→
{

𝜋Xi , j = i ,

X j , j ≠ i .
Temkin’s argument loc. cit. allows to show that { f0, . . . , fn} form an 𝜂-étale covering.

2.0.4. Dagger varieties. Roughly speaking, a dagger rigid space (or dagger variety) over a non-archimedean

field L is a rigid space over L together with overconvergent structure sheaves, namely X = (X̂ ,O†X ); cf. [30] for
basic definitions and properties. A presentation of a dagger affinoid rigid spaceU is a prosystem (Uh)h∈N with

Uh affinoid rigid spaces such thatU andUh are rational subspaces ofU0, thatU ⊂† Uh+1 ⊂† Uh . This system is

coinitial among all rational subspaces of U0 strictly containing X . The set of such presentations is non-empty

and cofiltered. For any presentation (Uh)h∈N of a dagger affinoid U , we have Γ(U ,O†U ) = lim−−→h
Γ(Uh ,OUh ),

which is a countable filtered colimit of Banach space.

We gather some cohomological feature of dagger rigid spaces.

2.1 Arithmetic and geometric Hyodo-Kato morphisms

2.1.1. Condensed Galois action on log-crystalline cohomology. Consider a log-scheme X 0 over SpecO0
F̆ ,1

(resp. X over a SpecO×C ,1) which is descent to a log-smooth integral map of fine log-schemes Z 0 → O0
FL ,1

(resp. Z → O×L,1). By functoriality of log-crystalline cohomology, the abstract absolute Galois group GL acts on

RΓcris (X 0/S 0
1 ↩→ S

0) and RΓcris (X /A×cris)). On the other hand, by base change, we have

RΓcris (X 0/O0
F̆
) ≃ RΓcris (Z 0/O0

FL
) ⊗■OFL

OF̆ , RΓcris (X /A×cris) ≃ RΓcris (Z ×/O×L ) ⊗■OL
Acris.

The GL-action comes actually from that on the coefficients OF̆ (resp. Acris), which is continuous for their natural

topology, hence it is upgraded to a condensed group action.

Alternatively, we may have started by defining the GL-action on log-crystalline cohomology of qcqs X

and X 0 as above. These GL-actions come from smooth GL-actions respectively on discrete RΓcris (X 0/O0
F̆ ,n
)

and RΓcris (X /A×cris,n) for n ≥ 1, which is uniquely upgraded to condensed actions by (1.3.25). Taking limits

and globalising, we can pass to the p-adic setting and drop the qcqs condition. This way, we can also define

condensed Galois action for more general base pd log-schemes that O0
F̆
and O×C (for example, Acris and Âl ,st,

see later for the notation).

2.1.2 - Lemma. Let Z be a quasi-separacted, fine and saturated log-scheme log-smooth and locally of finite type over

O0
F,1 of relative dimension d . Then the monodromy operator N [35, (3.6)] on RΓcris (Z /O0

F ) is nilpotent with order
bounded above by a function depending only on d .
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Proof. This is [9, Lemma 3.3], based on resolution of singulaties for log-smooth schemes and a nilpotency

result of Mokrane. □

2.1.3 - Theorem (Beilinson, Colmez-Nizioł, Bosco). LetZ be a qcqs fine log-smooth log-scheme overO×L,1 of Cartier
type for some finite extension L/K . Let X = Z ⊗O×L,1 O

×
C ,1 and X 0 = X ⊗O×C ,1 O

0
F̆ ,1
.

(i) There exists a natural equivalence in D (Mod■Bst
)

𝜀stHK : RΓcris (X 0/O0
F̆
) ⊗■OF̆

B+st ≃ RΓcris (X /A×cris) ⊗■Acris
B+st

which is independent of the choice of the descent Z of X , and compatible with the GL-action, the Frobenius 𝜑

and the monodromy operators N .

(ii) There exists a natural equivalence in D (Mod■C )

𝜀stdR : RΓcris (X 0/O0
F̆
) ⊗■OF̆

C ≃ RΓcris (X /O×C )Qp

which is independent of the choice of the descent Z of X , compatible with the GL-action and the Frobenius 𝜑,

and compatible with the previous equivalence via Fontaine’s map 𝜃 : Acris ↠ OC .

Proof. It has been treated in [19, Theorem 2.22, Corollary 2.31] and [9, Theorem 3.2]. Only the condensed

GL-equivariance need explanation. For this, we need to show that the natural maps in the construction of 𝜀stHK
are GL-equivariant.

Let us briefly explain the construction of 𝜀stHK. For sufficiently large n, we have factorisations of Frobn :

Frobn : Z
Fn→ Z 0 ↩→ Z

Frobn : Z 0 ↩→ Z
Fn→ Z 0.

Consider the diagram commutative of log-schemes

(2.1.3.1)

X 0 X1 S
×
1

Z 0 Z 0 S 0
L,1

𝜃0Z Fn𝜃Z FL,n𝜃L

Frobn

which we can denote by 𝜋. These data 𝜋 determine a lifting i ∗l𝜋 : r PDL ↠ O×L,1 as well as a log pd-thickening

Âl𝜋 ,st ↠ O×C ,1. Consider the commutative diagram

RΓcris (Z 0/O0
FL ,n
) RΓcris (Z 0/r PD,0L,n )

RΓcris (Z 0/O0
FL ,n
) RΓcris (X /Âl𝜋 ,st) RΓcris (X /A×cris) ⊗■Acris

Âl𝜋 ,st.

(Frobn )∗

p∗0

𝜋∗

𝜅∗l𝜋
≃

After taking limits then the isogeny category, (Frobn)∗ becomes invertible, and p∗0 admits a unique nat-

ural 𝜑-equivariant OFL -linear section in the isogeny category, called the Hyodo-Kato section; moreover,

(RΓcris (X /A×cris) ⊗■Acris
Âl𝜋 ,st)

N −nilp
Qp

≃ RΓcris (X /A×cris) ⊗■Acris
Bst. Recall also that RΓcris (Z 0/O0

FL
) is N -nilpotent
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(2.1.2). Altogether we get

RΓcris (Z 0/O0
FL
)Qp RΓcris (Z 0/r PD,0L )N −nilpQp

RΓcris (Z 0/O0
FL
)Qp RΓcris (X /Âl𝜋 ,st)

N −nilp
Qp

RΓcris (X /A×cris) ⊗■Acris
Bst.

(Frobn )∗≃ 𝜄0

p∗0

𝜋∗

𝜅∗l𝜋
≃

The morphism 𝜀stHK is then defined as the B+st-linearisation of the composite from the lower left corner to the

right end.

Regarding condensed GL-equivariance of 𝜀stHK, one only needs to prove the that of each morphism above.

Since the action is nontrivial only on the cohomology of X , we only need to verify the equivariance of 𝜋∗ and

𝜅∗,−1l𝜋
. But they are either base change morphism along a GL-equivariant morphism or inverse of such, so we

are done by the second description of the condensed GL-action in (2.1.1). □

2.1.4. Local arithmetic Hyodo-Kato morphism. Let ℨ ∈Mss
K be a qcqs semistable formal scheme over OL

for some finite extension L/K . We have the following GL-equivariant commutative diagram

RΓcris (ℨ0
1 /O

0
FL
) RΓcris (𝔛0

1 /O
0
F̆
) ⊗■OF̆

B+st

RΓcris (𝔛1/A×cris) ⊗■Acris
B+st

RΓcris (𝔛1/A×cris) ⊗■Acris
B+dR

RΓinf (𝔛𝜂/B+dR)

RΓinf (ℨ𝜂/L) ⊗■L B+dR

RΓdR (ℨ𝜂/L) ⊗■L B+dR

RΓdR (ℨ𝜂/L) ⊗■L B+pdR

𝜀stHK≃

𝜄
geom
HK

≃

≃

≃

where RΓcris (ℨ0
1 /O

0
FL
) and RΓdR (ℨ𝜂/L) are equipped with the trivial GL-action.

We define the local arithmetic Hyodo-Kato morphism as the composite

𝜄arithHK : RΓcris (ℨ0
1 /O

0
FL
) → (RΓdR (ℨ𝜂/L) ⊗■L B+pdR)

GL ≃← RΓdR (ℨ𝜂/L),

where the last isomorphism is from (1.3.11, ii) since RΓdR (ℨ𝜂/L) is represented by a bounded complex of

L-Banach spaces, or by abuse of notation as its Qp -linearisation

𝜄arithHK : RΓcris (ℨ0
1 /O

0
FL
)Qp → RΓdR (ℨ𝜂/L).

By design,

2.1.5 - Remark. There is certain independence of 𝜄arithHK on the embedding 𝜎 : L ↩→ C . For this, consider

two embeddings 𝜎,𝜏 : L ↩→ C . There exists a 𝛾 ∈ GK such that 𝜎 = 𝛾 ◦ 𝜏. Consider 𝔛𝜎 := ℨ ⊗L,𝜎 L and
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𝔛𝜏 := ℨ ⊗L,𝜏 C . We have a commutative diagram

𝔛𝜎 𝔛𝜏

SpfOC SpfOC

f𝛾

𝛾

hence a commutative diagram

RΓcris (ℨ0
1 /O

0
FL
) RΓcris (ℨ0

1 /O
0
FL
) ⊗■FL ,𝜎 F̆ RΓcris (𝔛0

𝜎,1/OF̆ 0 ) RΓinf (𝔛𝜎,𝜂/B+dR) ⊗B+dR B
+
pdR

RΓcris (ℨ0
1 /O

0
FL
) RΓcris (ℨ0

1 /O
0
FL
) ⊗■FL ,𝜎 F̆ RΓcris (𝔛0

𝜏,1/OF̆ 0 ) RΓinf (𝔛𝜏,𝜂/B+dR) ⊗B+dR B
+
pdR.

𝜎 ≃ 𝜄
geom
HK

𝜏

id⊗𝛾 ≃

≃

f ∗𝛾 ≃
𝜄
geom
HK

f ∗𝛾 ⊗id ≃

which is GL-equivariant (with respect to the G𝜎 (L) -action on the top row and the G𝜏 (L) -action on the bottom

row; noticing that G𝜎 (L) = 𝛾G𝜏 (L)𝛾
−1, so we have 𝛾G𝜏 (L) = G𝜎 (L)𝛾 showing equivariance). Taking GL-invariants

respectively, we obtain a commutative diagram

RΓcris (ℨ0
1 /O

0
FL
) RΓdR (ℨ𝜂/L)

RΓcris (ℨ0
1 /O

0
FL
) RΓdR (ℨ𝜂/L).

𝜄arithHK,𝜎

𝜄arithHK,𝜏

f ∗𝛾 ≃

which depends only on the restriction of 𝛾 on the Galois closure of the extension L/K .

2.1.6 - Lemma. The local arithmetic Hyodo-Kato morphism 𝜄arithHK is natural for ℨ ∈Mss
K .

Proof. One goes formally through the construction of 𝜄arithHK , eventually using (2.1.5). □

2.1.7 - Proposition. For ℨ ∈Mss
K a qcqs semistable formal scheme over OL and 𝔛 = ℨ ⊗OL OC , there is a natural

GL-equivariant commutative diagram

RΓcris (ℨ0
1 /O

0
FL
)Qp RΓdR (ℨ𝜂/L)

RΓcris (𝔛0
1 /O

0
F̆
) ⊗■OF̆

B+st RΓinf (𝔛𝜂/B+dR)

𝜄arithHK

𝜄
geom
HK

exhibiting the compatibility between local arithmetic and geometric Hyodo-Kato morphisms.

Proof. This follows from the construction. □

2.1.8 - Proposition. If ℨ ∈Mss
K be qcqs and semistable of relative dimension d over OL , then RΓcris (ℨ0

1 /O
0
FL
)Qp

is represented by a bounded complex of FL-Banach spaces, and lies in D [0,2d ] (Mod■FL ).

Proof. It is essentially the same proof as in [9, Theorem 3.15 (ii)]. Let us sketch it. The isomorphism 𝜀stHK
9

induces by base change to B+dR an GL-equivariant isomorphism

RΓcris (ℨ0
1 /O

0
FL
) ⊗■OFL

B+dR ≃ RΓdR (ℨ𝜂/L) ⊗■L B+dR.

9Alternatively, we can also use the original arithmetic Hyodo-Kato isomorphism [17, 4.2.3 (i)] for the proof.
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The right hand side is represented by a complex of FL-Banach spaces and lies in D [0,2d ] (Mod■FL ), while on the

left we have a splitting via B+dR = FL ⊕M for some FL-Banach space M . Therefore RΓcris (ℨ0
1 /O

0
FL
)Qp , being a

direct summand of the right hand side, is also represented by a complex of FL-Banach spaces and belongs to

D [0,2d ] (Mod■FL ). □

2.1.9 - Proposition. The local arithmetic Hyodo-Kato morphism 𝜄arithHK induced under L-linearisation an isomorphism

RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗FL L

≃→ RΓdR (ℨ𝜂/L).

Proof. The isomorphism 𝜀stHK induces an GL-equivariant isomorphism

RΓcris (ℨ0
1 /O

0
FL
) ⊗L■OFL

B+pdR ≃ RΓdR (ℨ𝜂/L) ⊗L■L B+pdR.

Since RΓcris (ℨ0
1 /O

0
FL
)Qp is represented by a bounded complex of FL-Banach spaces (2.1.8), we may take GL-

invariants and apply (1.3.11) to conclude. □

2.1.10 - Remark. For ℨ ∈Mss
K semistable over OL , one has the following commutative diagram

RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗FL L RΓdR (ℨ𝜂/L)

RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗F K RΓdR (ℨ𝜂/K ).

≃

⊕ ≃

The left vertical map is induced by L0,K := FL ⊗F K ↩→ FL ⊗FL L, which is the inclusion of the maximal

unramified subextension of L/K into L; the latter admits a canonical retract being the normalised trace map

rGalL/K := TrL/L0,K := 1
|Gal(L/L0,K ) |

∑
g ∈Gal(L/L0,K ) g ; hence it is a direct factor, and is an isomorphism if and only if

L/K is an unramified extension.

2.1.11. Arithmetic Hyodo-Kato cohomology. Let RΓHK : RigK → D(𝜑,N ) (Mod■
F̆
) be the 𝜂-éh hypersheafifi-

cation of the presheaf RΓpre
HK : ℨ ↦→ RΓ(ℨ0

1 /O
0
FLℨ
)Qp on Mss

K .

2.1.12 - Proposition (Local-global compatibility). For ℨ ∈Mss
K , the natural morphism

RΓHK (ℨ𝜂) → RΓcris (ℨ0
1 /O

0
FL
)

is an isomorphism in D(𝜑,N ) (Mod■F ).

Proof. Let us recall the proof of [17, Proposition 4.11] (cf. [46, Proposition 3.18]). One needs to show that

RΓcris (ℨ0
1 /O

0
FLℨ
) satisfies 𝜂-éh-hyperdescent for ℨ ∈ Mss

K (up to refinement of the hypercovering), admitting

the fact that RΓdR (ℨ𝜂/K ) does so. For this, we may assume ℨ is qcqs with splitting field K , and suppose that

ℨ• is an affine 𝜂-éh-hypercovering of ℨ, with respective splitting field L•, all finite Galois over K .

Let k ∈ N. Let E/K be a finite Galois extension containing all L•≤k+1, and let G = Gal(E/K ). Consider
ℨ
ss/OL•≤k+1
•≤k+1,OE

; this is a (k+1)-truncated 𝜂-éh-hypercovering of ℨss/OK
OE

, whose generic fibre is ZE , with each member

having splitting field OE ; moreover there is a natural G -action on ℨ
ss/OL•≤k+1
•≤k+1,OE

making this hypercovering G -

equivariant and compatible with the Galois action on ZE . Here, we denoted

(2.1.12.1) ℨss/OL
OE

:=
∐

𝜎∈HomK (L,E )
ℨ ⊗OL ,𝜎 OE ,

and let g ∈ G act on it by permuting indices 𝜎 ↦→ g −1 ◦ 𝜎 and at the same time acting on the coefficients

OE . It can be extended to an entire G -equivariant hypercovering ℨss/OL•
•,OE

. We have a bisimplicial object

ℨ′•,◦ :=
∐
G ×◦ ℨ

ss/OL•
•,OE

, the faces maps being evidently forgetting components of G except one being acting

35



on ℨss/OL
OE

via 𝜎 ↦→ g −1 ◦ 𝜎 on the index set (2.1.5)10. Its diagonal is an affine 𝜂-éh-hypercovering of ℨ𝜂 by

semistables with splitting field OE refining ℨ•. We have compatible isomorphisms

RΓcris ((ℨ′•≤k+1,◦)
1
0/O0

E )Qp ⊗FE E
≃→ RΓdR ((ℨ′•≤k+1,◦)𝜂/E)

by local arithmetic Hyodo-Kato isomorphism (2.1.9) since every formal schemes here are semistable over OE .

Taking limit over the index •, since ℨ′•,◦ forms an 𝜂-éh-hypercovering of
∐
G ×◦ ℨ ⊗OK OE , we obtain

𝜏≤k lim
[n ]∈Δk+1

RΓcris ((ℨ′[n ],◦)
1
0/O0

E )Qp ⊗FE E ≃ 𝜏≤k lim
[n ]∈Δk+1

RΓdR ((ℨ′[n ],◦)𝜂/E)
≃ 𝜏≤k

∏
G ×◦

RΓdR ((ℨ ⊗OK OE )𝜂/E)

≃ 𝜏≤k
∏
G ×◦

RΓdR (ℨ𝜂/K ) ⊗K E

≃ 𝜏≤k
∏
G ×◦

RΓcris ((ℨ ⊗OK OE )01 /O
0
E )Qp ⊗FE E ,

inside which we identify the FE -linear isomorphism

𝜏≤k lim
[n ]∈Δk+1

RΓcris ((ℨ′[n ],◦)
1
0/O0

E )Qp ≃ 𝜏≤k
∏
G ×◦

RΓcris ((ℨ ⊗OK OE )01 /O
0
E )Qp

≃ 𝜏≤k
∏
G ×◦

RΓcris (ℨ0
1 /O

0
F )Qp ⊗F FE

compatible with the residual simplicial structures.

Next, since the diagonal of a bisimplicial set calculates the total realisation, we have

𝜏≤k lim
Δk+1

RΓcris ((ℨ′•≤k+1,•≤k+1)
1
0/O0

E )Qp ⊗F K
≃← 𝜏≤k lim

Δk+1×Δk+1
RΓcris ((ℨ′•≤k+1,◦≤k+1)

1
0/O0

E )Qp ⊗F K
≃ 𝜏≤k lim

Δk+1

∏
G ×◦

RΓcris (ℨ0
1 /O

0
K )Qp ⊗F FE ⊗F K

≃ 𝜏≤kRΓ(G ,RΓcris (ℨ0
1 /O

0
K )Qp ⊗F FE ⊗F K )

≃← 𝜏≤kRΓcris (ℨ0
1 /O

0
K )Qp ⊗F K

The last isomorphism follows from the observation that due to finiteness of G , the condensed group cohomol-

ogy agrees with the smooth one, and can be computed pointwise; since these groups are Q-vector spaces, this

simplifies to pointwise and termwise genuine G -fixed points. Finally, we extract from it the isomorphism

𝜏≤kRΓcris (ℨ0
1 /O

0
K )Qp

≃→ 𝜏≤k lim
Δ
RΓcris ((ℨ′•,•)10/O0

E )Qp

showing the k -truncated 𝜂-éh-hyperdescent for the hypercovering ℨ′•,• refining ℨ•. □

2.1.13. Global arithmetic Hyodo-Kato morphism. Let Z ∈ RigK and ℨ• be an 𝜂-éh hypercovering of Z .

We define the global arithmetic Hyodo-Kato morphism as

𝜄arithHK := lim
Δ

𝜄arithHK,• : RΓHK (Z ) ≃ lim
Δ
RΓcris (ℨ0

•,1/O
0
FL•
) → lim

Δ
RΓdR (ℨ•,𝜂/L•)

≃← RΓdR (Z/K )

or by abuse of notation as the simplicial limit of Qp -linearised Hyodo-Kato morphisms. This can be made

independent of the chosen 𝜂-étale hypercovering by taking colimit over all possible such coverings, which form

a filtered system.

2.1.14 - Lemma. For Z ∈ RigK , the K -linearised Hyodo-Kato morphism 𝜄arithHK ⊗ id has a canonoical natural

10The intuition comes from the decomposition E⊗K (m+1) ≃∏
Gm E ,x0⊗ · · · ⊗xm ↦→ (x0 · g1 (x1 ) . . . gm (xm ) )g ∈Gm and the interpretation

of face maps.
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K -linear retract

rZ : RΓdR (Z/K ) → RΓHK (Z ) ⊗F K .

It is an isomorphism if Z has a 𝜂-éh-hypercovering by semistable formal schemes over OK .

Proof. Assume first that Z has an 𝜂-éh-hypercovering by semistable formal schemes ℨ• over OL for some

finite unramified extension L/K ; we may assume ℨ• to be qcqs (even affine). By éh-hyperdescent, local-global

compatibility (2.1.12) and local Hyodo-Kato morphism (2.1.9)11, we have isomorphisms

𝜄arithHK ⊗ id : RΓHK (Z ) ⊗F K ≃ lim
Δ
RΓcris (ℨ0

•,1/O
0
F )Qp ⊗F K

≃→ lim
Δ
RΓdR (ℨ•,𝜂/K )

≃← RΓdR (Z/K ).

Hence there is a caonical retract rZ := (𝜄arithHK ⊗ id)−1. Taking one step back, if ℨ• are semistable over OK only

for degrees • ≤ k + 1, then we get a canonical k -truncated retract r ≤kZ of 𝜏≤k (𝜄arithHK ⊗ id) : 𝜏
≤kRΓHK (Z ) ⊗F K →

𝜏≤kRΓdR (Z/K ). This definition does not depend on the choice of the (truncated) éh-hypercovering, hence

it is canonical; moreover, such retract is compatible with base change, i.e. for any finite Galois extension

E/K , the rigid space ZE ∈ RigE satisfying the same reduction condition as Z ∈ RigK , there is a canonical

Gal(E/K )-equivariant commutative diagram

RΓHK (Z ) ⊗F K RΓdR (Z/K )

RΓHK (ZE ) ⊗FE E RΓdR (ZE/E).

rZ
≃

rZE
≃

There are also normalised trace maps retracting the vertical maps by étale descent along ZE → Z , giving

again a canonical Gal(E/K )-equivariant commutative diagram

RΓHK (Z ) ⊗F K RΓdR (Z/K )

RΓHK (ZE ) ⊗FE E RΓdR (ZE/E).

rZ
≃

TrE/K
rZE
≃

TrE/K

The constructions are natural since they are inverse to 𝜄arithHK ⊗ id, which is natural. Similarly we have a truncated

analogue.

More generally, let Z ∈ RigK be qcqs. Let ℨ• ∈Mss
K be an 𝜂-éh-hypercovering of Z by qcqs semistables

splitting over L•. Similary as at the beginning of the proof of (2.1.12), there are increasing finite extensions Ek/L
for k ∈ N such that Ek contains all L•≤k+1, so that we obtain (k + 1)-truncated 𝜂-éh-hypercoverings ℨ(k )•≤k+1 of

ZEk in Mss
K which are compatible with base change between different k , compatible with the Gal(Ek/L)-action,

and such that ℨ(k )•≤k+1 has splitting field Ek . For m ≥ k , we define the k -truncated retract as the composite

r ≤kZ : 𝜏≤kRΓdR (Z/K ) → 𝜏≤kRΓdR (ZEm/Em)
r ≤kZEm→ 𝜏≤kRΓHK (ZEm ) ⊗FEm Em

TrEm /K→ 𝜏≤kRΓHK (Z ) ⊗F E ,

which does not depend on m by the above commutative diagram, hence r ≤Z is well-defined; it is indeed a

retract of 𝜏≤k (𝜄arithHK ⊗ id) by diagram chasing. Taking filtered colimts, we obtain the retract rZ := lim−−→k
r ≤kZ of

𝜄arithHK ⊗ id. The naturality comes from that of the first special case.

Finally, the case for general Z follows formally from the qcqs case. □

2.1.15 - Proposition. If Z ∈ RigK be qcqs, then RΓHK (Z ) is represented by a complex of solid-nuclear F -vector
spaces, and lies in D [0,2d ] (Mod■F ), and the monodromy operator N is nilpotent with order bounded above by a

function depending only on d .
11Alternatively, we can also use the original arithmetic Hyodo-Kato isomorphism [17, 4.2.3 (i)] for the proof.
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Proof. By local-global compatibility (2.1.12), one reduces to the case where Z = ℨ𝜂 for some qcqs ℨ ∈ Mss
K .

Then the solid-nuclear representability and the nilpotency are clear respectively by (2.1.8) and (2.1.2). The

concentration statement is clear since it is true for RΓdR (Z/K ), which retracts to RΓHK (Z ) ⊗F K by (2.1.14). □

2.1.16 - Remark. Bootstrapping boundedness into the proof of solid-nuclearity, we see that

RΓHK (Z ) ≃ 𝜏2d𝜎≤2d+1RΓHK (Z ) ≃ 𝜏2d lim
Δ2d+1

RΓcris (ℨ0
•,1/O

0
FL•
)Qp

for any 𝜂-éh-hypercovering ℨ• of Z in Mss
K . Therefore RΓHK (Z ) can be represented by the truncation of a

bounded complex of FL-Banach spaces.

2.1.17. Geometric Hyodo-Kato cohomology. We have a completed version as well as a decompeted version

of geometric Hyodo-Kato cohomology.

(i) Let the (completed) geometric Hyodo-Kato cohomology RΓHK : RigC → D(𝜑,N ) (Mod■
F̆
) be the 𝜂-éh-

hypersheafification of the presheaf 𝔛 ↦→ RΓcris (𝔛0
1 /O

0
F̆
)Qp on Mss,b

C .

(ii) Let the decompleted geometric Hyodo-Kato cohomology RΓHK,F nr : RigC → D(𝜑,N ) (Mod■F nr ) be the 𝜂-

éh-hypersheafification of the RΓpre
HK,F nr : 𝔛 ↦→ colimΣ RΓcris (ℨ0

1 /O
0
FL
)Qp on Mss,b

C , where Σ is the filtered

system whose date are the reduction mod p of quadruples (L,ℨ,𝜎,𝜃) such that 𝜎 : L ↩→ C is a finite

extension of K , ℨ is a semistable formal model over OL , and 𝜃 : 𝔛
≃→ ℨ ⊗OL ,𝜎 OC is an isomorphism

over OC , and whose morphisms are morphisms between the reduced objects ℨ0
1 [17, 4.3.1].

One can globalise the geometric Hyodo-Kato morphism to obtain

𝜄
geom
HK : RΓHK (X ) ⊗■F̆ B

+
st → RΓinf (X /B+dR)

for X ∈ RigC ; reducing mod ker 𝜃, we obtain the Hyodo-Kato isomorphism [9, Theorem 3.15]

(2.1.17.1) 𝜄
geom
HK,C : RΓHK (X ) ⊗■F̆ C

≃→ RΓdR (X /C )

compatible with the arithmetic Hyodo-Kato morphism (2.1.13).

Recall that for 𝔛 ∈Mss,b
C , any map of quadruples (L,ℨ,𝜎,𝜃) → (L′,ℨ′,𝜎′, 𝜃′) in Σ induces a canonical

base change isomorphism

(2.1.17.2) RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗FL ,𝜎 FL′

≃→ RΓcris (ℨ′01 /O0
FL′
)Qp

in D(𝜑,N ) (Mod■FL ).

2.1.18 - Proposition (Local-global compatiblity). For 𝔛 ∈Mss,b
K , the natural maps

RΓHK (𝔛𝜂) → RΓcris (𝔛0
1 /O

0
F̆
)Qp in D(𝜑,N ) (Mod■

F̆
)

RΓHK,F nr (𝔛𝜂) → RΓpre
HK,F nr (𝔛) in D(𝜑,N ) (Mod■F nr )

are isomorphisms.

Proof. For RΓHK, this is [9, Theorem 3.15 (i)]. For RΓHK,F nr , this is done as in [17, Proposition 4.23 (1)] using the

original Hyodo-Kato morphism via convergent cohomology of op. cit. (4.17). □

2.1.19 - Lemma. For Z ∈ RigK , there is canonically a natural GK -action on RΓHK (ZC ), and a natural GK -

equivariant F̆ -linear morphism

RΓHK (Z ) ⊗■F F̆ → RΓHK (ZC ).

It is an isomorphism if Z has an 𝜂-éh-hypercovering by semistable formal schemes over OK . Moreoever, any F̆ -linear

retract r : C → F̆ induces a natural F̆ -linear retract rHK : RΓHK (ZC ) → RΓHK (Z ) ⊗■F F̆ .
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Proof. By functoriality, GK acts on RΓHK (ZC ). We want to make it condensed. By 𝜂-éh-hyperdescent, we may

assume Z = ℨ𝜂 where ℨ is a semistable formal scheme over OL with splitting field a Galois extension L of K .

Then (ℨss
OC
)𝜂 :=

∐
𝜎∈HomK (L,C ) ℨ ⊗OL ,𝜎 OC (2.0.1.1) is a semistable formal model of ZC , the natural GK -action

on ZC extends canonically to one on ℨss
OC

by permuting the indices 𝜎 ↦→ g −1𝜎 and meanwhile acting on the

coefficients OC . By local-global compatibilities and base change, we have

RΓHK (Z ) ≃ RΓcris (ℨ0
1 /O

0
FL
)Qp

and
RΓHK (ZC ) ≃ RΓcris ((ℨss

OC
)10/O0

F̆
)Qp ≃

∏
𝜎∈HomK (L,C )

RΓcris ((ℨ ⊗OL ,𝜎 OC )01 /O
0
F̆
)Qp

≃
∏

𝜎∈HomK (L,C )
RΓcris (ℨ0

1 /O
0
FL
)Qp ⊗■FL ,𝜎 F̆ .

The natural GK -action on the right hand side is given by permuting components 𝜎 ↦→ g ◦𝜎 and acting on the

coefficients F̆ , i.e. by letting g · (x𝜎 ⊗ c𝜎)𝜎 = (xg −1𝜎 ⊗ g (xg −1𝜎)); this is refined canonically to be a condensed

action. The natural map RΓHK (Z ) → RΓHK (X ) corresponds to the diagonal embedding; linearising over F ,

we obtain the desired GK -equivariant F̆ -linear morphism, via the GK -equivariant morphism

FL ⊗F F̆
≃→

∏
𝜎∈HomF (FL ,F̆ )

FL ⊗FL ,𝜎 F̆ ↩→
∏

𝜎∈HomK (L,C )
FL ⊗FL ,𝜎 F̆ ,

where the last map is induced by the restriction surjection HomK (L,C ) ↠ HomF (FL , F̆ ) on indices. This

becomes an isomorphism if L/K is unramified.

As for the retract, given a F̆ -linear splitting r : C → F̆ , we define it as the composite

rHK : RΓHK (ZC )
𝜄
geom
HK→ RΓdR (Z/C ) ≃ RΓdR (Z/K ) ⊗■K C

rZ ⊗r→ RΓHK (Z ) ⊗■F F̆

using the arithmetic Hyodo-Kato retract rZ (2.1.14), and check that it is indeed a retract. □

2.1.20 - Corollary. For Z ∈ RigK , there is a natural GK -equivariant commutative diagram

RΓHK (Z ) ⊗■F B+st RΓdR (Z/K ) ⊗■K B+dR

RΓHK (ZC ) ⊗■F̆ B
+
st RΓinf (ZC /B+dR)

𝜄arithHK ⊗𝜄p

≃
𝜄
geom
HK

exhibiting the compatibility of arithmetic and geometric Hyodo-Kato morphisms.

Write about 𝜄p : B+st ↩→ B+dR by sending log[p♭] ↦→ log [p
♭ ]
p .

Proof. The same proof as above applies, by reducing to semistable reduction case and using the compatibility

between 𝜄arithHK and 𝜄
geom
HK (2.1.7). □

2.1.21. As a consequence of (2.1.17.2), the GL-action on RΓpre
HK,F nr (𝔛) is condensed and smooth, making

RΓpre
HK,F nr (𝔛) ∈ D sm

(𝜑,N ) (Mod■F nr [GL ]). By descent and truncation argument combined with (2.0.1.1) as in the

proof of (2.1.14), for Z ∈ RigK qcqs, the GK -action on RΓHK,F nr (ZC ) is condensed and smooth, making

RΓHK,F nr (ZC ) ∈ D sm
(𝜑,N ) (Mod■F nr [GK ]); moreover, for any k ∈ N, there is a finite Galois extension E/K such

that 𝜏≤kRΓHK,F nr (ZC ) is defined over FE , such that there exists an (k + 1)-truncated 𝜂-éh-hypercovering ℨ′≤k+1
of ZE compatible with Gal(E/K )-action and such that ℨ′≤k+1 all have splitting field E ; consequently, we have
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isomorphisms

𝜏≤kRΓHK,F nr (ZC ) ≃ 𝜏≤k lim
Δk+1

RΓcris ((ℨ′≤k+1)
0
1 /O

0
FE
)Qp ⊗■FE F

nr ≃ 𝜏≤kRΓHK (ZE ) ⊗■FE F
nr

in D(𝜑,N ) (Mod■F nr [GK ]). The same argument applies to the complete Hyodo-Kato cohomology, and shows, with

the help of (2.1.19), that for Z ∈ RigK qcqs and for any k ∈ N, there exists a finite extension of E and an

(k + 1)-truncated 𝜂-éh-hypercovering ℨ′≤k+1 of ZE compatible with Gal(E/K )-action and with splitting field E ,

such that there are isomorphisms

𝜏≤kRΓHK (ZC ) ≃ 𝜏≤k lim
Δk+1

RΓcris ((ℨ′≤k+1)
0
1 /O

0
FE
)Qp ⊗■FE F̆ ≃ 𝜏≤kRΓHK (ZE ) ⊗■FE F̆

in D(𝜑,N ) (Mod■
F̆ [GK ]

). In particular, the natural map RΓHK,F nr (ZC ) ⊗■F nr F̆
≃→ RΓHK (ZC ) in D(𝜑,N ) (Mod■

F̆ [GK ]
)

is an isomorphism.

2.1.22 - Proposition. Let Z ∈ RigK be qcqs. We have H
0 (GK ,H n

HK (ZC ) ⊗
■
F̆
Blog [ 1t ]) = H n

HK (Z ).

Proof. By (2.1.21), there exists a finite Galois extension E/K such that H n
HK (ZC ) ≃ H

n
HK (ZE ) ⊗FE F̆ in Mod■

F̆ [GK ]
,

hence we are reduced to showing

H 0 (GK ,H n
HK (ZE ) ⊗

■
FE Blog [

1
t
]) = H n

HK (Z ).

The computation H 0 (GK ,BdR) = K and the inclusion 𝜄p : Blog [ 1t ] ↩→ BdR implies

K ↩→ H 0 (GE ,Blog [
1
t
]) ↩→ H 0 (GK ,BdR) = K ,

hence they are all equal. On the other hand, since H n
HK (ZE ) is a solid-nuclear FE -vector space (2.1.15), and so

is Blog [ 1t ], we have by (1.3.5)

H 0 (GE ,H n
HK (ZE ) ⊗

■
FE Blog [

1
t
]) ≃ H n

HK (ZE ) ⊗
■
FE H

0 (GK ,Blog [
1
t
]) = H n

HK (ZE ).

Moreover, since Gal(E/K ) is a finite group, by smooth of its action, we obtain (1.3.22)

H 0 (Gal(E/K ),H n
HK (ZE )) ≃ H

nRΓ(GK ,RΓHK (ZE )) ≃ H n
HK (Z ),

where the last isomorphism follows from the étale descent along ZE → Z . □

2.2 Overconvergent variants

2.2.1. Cohomology for dagger rigid spaces. Now, we consider dagger varieties instead of rigid-analytic

varieties. There two ways to do this [17, §5], yielding strictly quasi-isomorphic theories. On the one hand,

one can consider the dagger analogue of Beilinson base (Mss,†
K , (−)𝜂) and (Mss,b ,†

K , (−)𝜂) in order to exploit

the finiteness property of rigid cohomology or de Rham cohomology. This way, we obtain the Hyodo-Kato

cohomology à la Grosse-Klönne RΓGK
HK as an éh-hypersheaf on Rig†K unfolded from the rational log-rigid

cohomology [13, 3.1.2] ℨ ↦→ RΓrig (ℨ0
1 /O

0
F ) on Mss,†

K and as an éh-hypersheaf on Rig†C unfolded from 𝔛 ↦→
RΓrig (𝔛0

1 /O
0
F̆
) on Mss,b ,†

C .

On the other hand, let L be K or C and let V be a presentable ∞-category of coefficients; there is a

general procedure to produce éh-hypersheaves on Rig†L from étale hypersheaves on RigSmL : for any F ∈
Shvhyp(RigL,ét,V ), we define

F† (U ) := lim−−→
h

RΓ(Uh ,F)
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for any presentation (Uh)h of a smooth affinoid U ; this is well-defined and functorial, and satisfies étale

hyperdescent, thus giving F† ∈ Shvhyp (SmAffd†L,ét,V ); then we éh-hypersheafify it to get

F† ∈ Shvhyp(Rig†L,éh,V );

this satisfies éh-local-global compatibility for smooth affinoids cf. [17, 3.2.3] and [9, 3.24]12. One has a natural

morphism RΓ(X ,F†) → RΓ(X̂ ,F) for X ∈ Rig†L , which is moreover an isomorphism if X is partially proper

[9, Proposition 3.26]. This approach applies to for example sheaves F ∈ {RΓHK,RΓdR (−/L)}, as well as

F = F •RΓinf (−/B+dR) if L = C , in the respective categories.

These two definitions are indeed compatible.

2.2.2 - Proposition. Let X ∈ Rig†C .

(i) There is a natural isomorphism in D(𝜑,N ) (Mod■
F̆
)

RΓHK (X ) ≃ RΓGK
HK (X ).

(ii) If X = 𝔛𝜂 for some 𝔛 ∈ Rigss,b ,†C , then there is a natural isomorphism in D(𝜑,N ) (Mod■
F̆
)

RΓHK (X ) ≃ RΓrig (𝔛0
1 /O

0
F̆
).

(iii) There is a natural Hyodo-Kato isomorphism in D (Mod■C )

𝜄
geom,†
HK : RΓHK (X ) ⊗■F̆ C

≃→ RΓdR (X /C ).

Proof. This is [9, Theorem 3.29]. Let us explain it briefly. The (i) is [19, 4.2.1 (iv), Lemma 4.17]. This together

with local-global compatibility of RΓGK
HK (X ) of loc. cit. implies (ii). For (iii), we reduce by éh-hyperdescent

and [8, Corollary A.67 (ii)] to the basic semistable reduction case, we only need need to prove the statements

for smooth dagger affinoids with presentation; but then this follows from the rigid-analytic case (2.1.17.1) and

taking filtered colimits as in the construction of F† (2.2.1). □

2.2.3 - Proposition. Let Z ∈ Rig†K .

(i) There is a natural isomorphism in D(𝜑,N ) (Mod■F )

RΓHK (Z ) ≃ RΓGK
HK (Z ).

(ii) If Z = ℨ𝜂 for some ℨ ∈ Rigss,†K , then there is a natural isomorphism in D(𝜑,N ) (Mod■F )

RΓHK (Z ) ≃ RΓrig (ℨ0
1 /O

0
F ).

(iii) There is a natural Hyodo-Kato morphism in D (Mod■K )

𝜄arith,†HK : RΓHK (Z ) ⊗F K
≃→ RΓdR (Z/C )

with a canonical natural retract r †Z , which is an equivalence if Z has an 𝜂-éh-hypercovering by semistable

formal schemes over OK .
12The construction 3.18 in op. cit. should be modified as follows: consider the fully faithful embedding 𝜄 : Rig†L → pro(RigL )

into the pro-system of rigid analytic analytic spaces, preserving products and étale coverings, yielding a morphism of topoi (𝜄∗, 𝜄∗ ) :
pro(RigL )∼ét → Rig†,∼L,ét; consider the functor l : RigL → pro(RigL ) sending a rigid space to its constant system, also yielding a

morphism of topoi (l ∗,l∗ ) : pro(RigL )∼ét → Rig∼L,ét; then we have F† is the éh-hypercompletion of the étale sheaf (resp. of the étale

hypersheaf) 𝜄∗l ∗F ∈ Rig†,∼L,ét.
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Proof. The (i) is [19, 4.2.1 (ii), Lemma 4.14]. This together with local-global compatibility of RΓGK
HK (Z ) [17,

Proposition 5.5] implies (ii). For (iii), we reduce as above to smooth dagger affinoids with presentation Z = ℨ𝜂

with ℨ ∈ Mss,†
K ; then we use (2.1.13) to construct 𝜄arith,†HK , and (2.1.14) to construct r †Z , by passing to filtered

colimits. □

2.2.4. Moreover, the identifications (2.2.2, ii) and (2.2.3, ii) are compatible with base change morphisms, as

shown in their proofs. Then the same argument as in (2.1.21), now using base change properties of rational

log-rigid cohomology instead of log-crystalline cohomology (2.1.17.2), we find that for Z ∈ Rig†K qcqs and

for any k ∈ N, there exists a finite extension of E and an (k + 1)-truncated 𝜂-éh-hypercovering ℨ′≤k+1 of ZE
compatible with Gal(E/K )-action and with splitting field E , such that there are isomorphisms

𝜏≤kRΓHK (ZC ) ≃ 𝜏≤k lim
Δk+1

RΓrig ((ℨ′≤k+1)
0
1 /O

0
FE
) ⊗■FE F̆ ≃ 𝜏≤kRΓHK (ZE ) ⊗■FE F̆

in D(𝜑,N ) (Mod■
F̆ [GK ]

).

2.2.5 - Remark. The advantage of using dagger version is that, for qcqs dagger variety X over C (resp. qcqs

dagger variety Z over K ), the condensed cohomology groups H i
HK (X ) (resp. H

i
HK (Z ), H

i
dR (X /C ), H

i
dR (Z/K ))

are finite-dimensional condensed vector spaces over F̆ (resp. F , C , K ) [17, Proposition 5.12, Proposition 5.6, the

first paragraph à la Grosse-Klönne just before 5.1.1].

2.2.6 - Proposition. Let Z ∈ Rig†K be qcqs. We have H
0 (GK ,H n

HK (ZC ) ⊗
■
F̆
Blog [ 1t ]) = H n

HK (Z ) for all n ∈ N.

Proof. The reasoning goes as (2.1.22, but there is one step which relatively much easier than (2.1.22): for any

finite Galois extension E/K , one obtains

H 0 (GE ,H n
HK (ZE ) ⊗

■
FE Blog [

1
t
]) = H n

HK (ZE ) ⊗FE H
0 (GE ,Blog [

1
t
]) = H n

HK (ZE )

by classicality and finiteness of H n
HK (ZE ) [17, Proposition 5.6 (1)] rather than using nuclearity. □

2.2.7 - Corollary. Let Z ∈ Rig(†)K be partially proper. We have H 0 (GK ,H n
HK (ZC ) ⊗

■
F̆
Blog [ 1t ]) = H n

HK (Z ).

Proof. In the partially proper case, writing Z as the strictly increasing union of qcqs U ∈ Rig†K , we have

RΓHK (ZC ) ≃ R lim←−−U RΓHK (UC ), hence by [9, Corollary A.67 (i)]

RΓHK (ZC ) ⊗■F̆ t
−N Blog,≤N ≃ R lim←−−

U

(RΓHK (UC ) ⊗■F̆ t
−N Blog,≤N ), n ∈ N,

where t−N Blog,≤N ⊂ t−N Blog = t−N B [U ] denotes the subspace consisting of polynomials in U of degree ≤ N
with coeffcients in t−N Blog, which is a F̆ -Fréchet space, being a finite direct sum of the F̆ -Fréchet space B .

Now for any i ∈ N, the system {H i
HK (UC )}U is Mittag-Leffler by finite-dimensionality, hence so is the system

{H i
HK (UC ) ⊗

■
F̆
t−N Blog,≤N }U for any i ,N ∈ N. Therefore, their R1 lim←−−U vanish, so

H n
HK (ZC ) ≃ lim←−−

U

H n
HK (UC )

H n
HK (ZC ) ⊗

■
F̆
t−N Blog,≤N ≃ lim←−−

U

(H n
HK (UC ) ⊗

■
F̆
t−N Blog,≤N ).

Applying the proposition (2.2.6) to each U , and recalling that H 0 (GK ,−) commutes with limits, we obtain

H 0 (GK ,H n
HK (ZC ) ⊗

■
F̆
t−N Blog,≤N ) = lim←−−

U

H 0 (GK ,H n
HK (UC ) ⊗

■
F̆
t−N Blog,≤N ) = lim←−−

U

H n
HK (U ) = H

n
HK (Z ).

Taking the filtered colimit for N → +∞, then we are done. □
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2.3 Arithmetic syntomic cohomology

Let us start with recalling a comparison result of [19] in the geometric situation, and then descend to the

arithmetic case.

2.3.1. Geometric syntomic cohomology. For X ∈ RigC and r ∈ N, one defines its (Bloch-Kato) syntomic

cohomology as

(2.3.1.1) RΓBK
syn (X ,r ) :=

[
(RΓHK (X ) ⊗■F̆ B

+
st)𝜑=p

r ,N =0
𝜄
geom
HK→ RΓinf (X /B+dR)/F

r
]
.

For 𝔛 ∈Mss
C , one has the geometric Fontaine-Messing syntomic cohomology

(2.3.1.2) RΓFM
syn (𝔛,r ) :=

[
RΓcris (𝔛)𝜑=p

r

Qp

can→ RΓcris (𝔛)Qp /F r
]
.

In this case, the two syntomic cohomology complexes are actually naturally isomorphic

RΓFM
syn (𝔛,r ) ≃ RΓBK

syn (𝔛𝜂 ,r )

via the following natural commutative diagram [19, Proposition 5.3]

(2.3.1.3)

RΓcris (𝔛)𝜑=p
r

Qp
RΓcris (𝔛)Qp /F r

(RΓcris (𝔛) ⊗■Acris
B+st)

𝜑=pr ,N =0
Qp

(RΓcris (𝔛) ⊗■Acris
B+dR)/F

r

(RΓcris (𝔛0
1 /O

0
F̆ ,1
)Qp ⊗■F̆ B

+
st)𝜑=p

r ,N =0 RΓinf (𝔛𝜂/B+dR)/F
r .

≃

can

≃ 𝜅 [19, §3.3]

can

≃ [19, Proposition 3.27 (2)]𝜀stHK ≃
𝜄
geom
HK

Now we deal with the arithmetic case.

2.3.2. Arithmetci syntomic cohomology. For Z ∈ RigK and r ∈ N, one defines its arithmetic syntomic

cohomology as

(2.3.2.1) RΓBK
syn (Z,r ) := [RΓHK (Z )𝜑=p

r ,N =0
𝜄arithHK→ RΓdR (Z/K )/F r ] .

For ℨ ∈Mss
K , one has the arithmetic Fontaine-Messing syntomic cohomology

(2.3.2.2) RΓFM
syn (ℨ,r ) :=

[
RΓcris (ℨ)𝜑=p

r

Qp

can→ RΓcris (ℨ)Qp /F r
]
.

They are similarly defined for dagger varieties.

2.3.3 - Proposition. For ℨ ∈Mss
K , one has a natural isomorphism

RΓFM
syn (ℨ,r ) ≃ RΓBK

syn (ℨ𝜂 ,r ).

Proof. Let L be the splitting field of ℨ over OK (or any other field L such that ℨ actually has a semistable
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structural morphism to OL ). Consider the following natural commutative diagram

(2.3.3.1)

RΓcris (ℨ)𝜑=p
r

Qp
RΓcris (ℨ)Qp RΓcris (ℨ)Qp RΓcris (ℨ)Qp /F r

RΓcris (ℨ0
1 )

𝜑=pr

Qp
RΓcris (ℨ/O×L )Qp RΓcris (ℨ/O×L )Qp /F r

RΓcris (ℨ0
1 /r

PD,0
L )𝜑=p

r ,N =0
Qp

RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

RΓcris (ℨ0
1 /O

0
FL
) RΓinf (ℨ𝜂/L) RΓinf (ℨ𝜂/L)/F r

≃bch

can

c ⌝

c⌞

bch

can

≃bch

≃i ∗

≃bch

can

≃bch

≃p∗0

𝜄arithHK can

where the left upper vertical arrow is an isomorphism by a standard Frobenius argument [16, Proof of Lemma

5.9], the left middle vertical arrow i ∗ is an isomorphism by [36, Lemma 4.2], and the left lower vertical arrow p∗0
is an isomorphism because Frobenius is highly nilpotent onT ; the right upper vertical arrow is an isomorphism

by Beilinson’s identification [4, Theorem 1.9.2], ℨ endowed with the log-structure induced by its special fibre

being smooth over O×L . Every commutativity except that of the middle eye-form cavity is clear.

It remains to show that there is a natural equivalence c ⌝ ≃ c⌞ . Since everything here lies in D (Mod■L) ↩→
D (Mod■L)GL , by adjunction it amounts to proving the existence of natural equivalence between their post-

compositions with RΓdR (Z/L) → RΓdR (Z/L) ⊗■L B+pdR, i.e. the diagram

(2.3.3.2)

RΓcris (ℨ)𝜑=p
r

Qp
RΓcris (ℨ)Qp RΓcris (ℨ)Qp

RΓcris (ℨ0
1 )

𝜑=pr

Qp
RΓcris (ℨ/O×L )Qp

RΓcris (ℨ0
1 /r

PD,0
L )𝜑=p

r ,N =0
Qp

RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

RΓcris (ℨ0
1 /O

0
FL
) RΓinf (ℨ𝜂/L) RΓinf (ℨ𝜂/L) ⊗■L B+pdR

≃bch

can

c ⌝

c⌞

bch

≃i ∗

≃bch

≃p∗0

can 𝜄arithHK can

commutes, where we put 𝔛 = ℨ ⊗OL OC . We need to identify c ⌝ and c⌞ respectively with some more explicit

maps, then show the natural equivalence between them.

First, let us begin with identifying c ⌝ . Consider the following diagram

(2.3.3.3)

RΓcris (𝔛)𝜑=p
r

Qp
RΓcris (𝔛)Qp

RΓcris (ℨ)𝜑=p
r

Qp
RΓcris (ℨ)Qp

RΓcris (ℨ/O×L )Qp RΓinf (𝔛𝜂/B+dR) ⊗
■
B+dR

B+pdR

RΓinf (ℨ𝜂/L) RΓinf (ℨ𝜂/L) ⊗■L B+pdR

can

≃bch
can

bch

c ⌝ bch

bch

≃bch

can

bch ≃bch
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where all blocks commute, the right diamond-shaped block commutes by crystalline-theoretic base change

compatibility.

Next, we consider the diagram

(2.3.3.4)

RΓcris (𝔛)𝜑=p
r

Qp
RΓcris (𝔛)Qp

RΓcris (ℨ)𝜑=p
r

Qp
(RΓcris (𝔛0

1 /O
0
F̆
)Qp ⊗■F̆ B

+
st)𝜑=p

r ,N =0 RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ B

+
st

RΓinf (𝔛𝜂/B+dR) ⊗
■
B+dR

B+pdR

RΓinf (ℨ𝜂/L) RΓinf (ℨ𝜂/L) ⊗■L B+pdR

can
≃

bch
bch

c ⌝

≃𝜀stHK

can

𝜄
geom
HK

can

bch ≃bch

whose upper right block commutes by the definition of 𝜄geomHK .

Next, the diagram

(2.3.3.5)

RΓcris (𝔛)𝜑=p
r

Qp

RΓcris (ℨ)𝜑=p
r

Qp
(RΓcris (𝔛0

1 /O
0
F̆
)Qp ⊗■F̆ B

+
st)𝜑=p

r ,N =0 RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ B

+
st

RΓinf (𝔛𝜂/B+dR) ⊗
■
B+dR

B+pdR

RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

RΓ(ℨ0
1 /O

0
FL
)Qp RΓinf (ℨ𝜂/L) RΓinf (ℨ𝜂/L) ⊗■L B+pdR

bch

c ⌝

≃𝜀stHK

can

𝜄
geom
HK

bch

can

bch

𝜄arithHK can

bch ≃bch

commutes.

Hence, to identify c ⌝ and c⌞ , we are left to show the commutativity of the diagram

(2.3.3.6)

RΓcris (ℨ)𝜑=p
r

Qp
RΓcris (𝔛)𝜑=p

r

Qp

RΓcris (ℨ0
1 )

𝜑=pr

Qp
(RΓcris (𝔛0

1 /O
0
F̆
)Qp ⊗■F̆ B

+
st)𝜑=p

r ,N =0 RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ B

+
st

RΓcris (ℨ0
1 /r

PD,0
L )𝜑=p

r ,N =0
Qp

RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

RΓ(ℨ0
1 /O

0
FL
)Qp

≃bch

bch

≃i ∗

≃𝜀stHK

can

≃p∗0

bch

can

bch

particularly that of the left block.

For sufficiently large n, we have factorisations of Frobenius Frobn : ℨ1
Fn→ ℨ0

1 ↩→ ℨ1 and Frobn : ℨ0
1 ↩→
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ℨ1
Fn→ ℨ0

1 . Consider the commutative diagram of log-schemes

(2.3.3.7)

𝔛0
1 𝔛1 S

×
1

ℨ0
1 ℨ0

1 S 0
L,1

𝜃0ℨ
Fn𝜃ℨ FL,n𝜃L

Frobn

which we can denote by 𝜋. These data 𝜋 determine a lifting i ∗l𝜋 : r
PD
L ↠ O×L,1.

Consider the diagram before taking Frobenius fixed points

(2.3.3.8)

RΓcris (ℨ)Qp RΓcris (𝔛)Qp ⊗■B+cris B
+
st

RΓcris (ℨ0
1 )Qp RΓcris (𝔛1/Âl𝜋 ,st)

N −nilp
Qp

RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ B

+
st

RΓcris (ℨ0
1 /r

PD,0
L )Qp RΓcris (ℨ0

1 /r
PD,0
L )N −nilpQp

RΓcris (ℨ0
1 /O

0
FL
)Qp RΓcris (ℨ0

1 /O
0
FL
)Qp

bch

bch

≃
𝜅∗l𝜋

i ∗

≃𝜀stHK

p∗0

(Frobn )∗
𝜋∗

𝜄0

bch

≃
(Frobn )∗

𝜄0

where 𝜄0 is the (unique) natural 𝜑-equivariant FL-linear Hyodo-Kato section; the lower right block commutes

by the definition of 𝜀stHK; the lower left circuit commutes (even becomes an isomorphism) after taking (−)N =0;

the upper left vertical base change morphism becomes an isomorphism after taking (−)𝜑=pr ; and i ∗ becomes

isomorphism after taking (−)N =0 of the target.

For the commutativity of the (−)𝜑=pr invariant of the upper left block of (2.3.3.8), we may look at the

following commutative diagram

(2.3.3.9)

RΓcris (ℨ) RΓcris (ℨ) RΓcris (𝔛)Qp ⊗■B+cris B
+
st

RΓcris (ℨ0
1 ) RΓcris (ℨ0

1 )

RΓcris (ℨ0
1 /r

PD,0
L ) RΓcris (ℨ0

1 /r
PD,0
L ) RΓcris (𝔛1/Âl𝜋 ,st)Qp

bch

bch

(Frobn )∗

bch

𝜅∗l𝜋

i ∗ i ∗

(Frobn )∗ 𝜋∗

which is clear by base change maps.

Putting these altogether, we obtain the commutativity of (2.3.3.6), which is natural since it is insensitive

to the n ≫ 0 chosen, cf. [19, Proof of Theorem 2.22, Independence of the choice of 𝜋 and 𝜉0]. This completes

the proof that c ⌝ ≃ c⌞ after − ⊗■L B+pdR, whence c
⌝ ≃ c⌞ by taking derived GL-fixed points. □

2.3.4 - Remark. Given a OFL -class l ∈ (𝔪L/p𝔪L)\{0} associated with i ∗l : r PDL ↠ O×L,1 lifting r
PD
L ↠ O0

FL ,1
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along O×L,1 ↠ O0
FL ,1

, and assuming that v (l ) = 1
e , there is another approach providing an equivalence

𝛼l : RΓ
FM
syn (ℨ,r ) ≃ RΓBK

syn (ℨ𝜂 ,r ),

a priori depending on the choice of l , which however will be of other interests. It consists of finding a GL-

equivariant morphism 𝜀stHK,l : RΓcris (ℨ
0
1 /O

0
FL
)Qp → RΓcris (𝔛1/A×cris)Qp ⊗■B+cris B

+
st equivalent to 𝜀stHK. For the pair

(𝜋,n) associated with the data (2.3.3.7) such that pn

e ≥ 1, the 𝜀stHK,l is defined as the first row of the following

commutative diagram

RΓcris (ℨ0
1 /O

0
FL
) RΓcris (ℨ1/r PDL )

N −nilp
l ,Qp

RΓcris (𝔛1/Âl ,st)N −nilpQp
RΓcris (𝔛1/A×cris)Qp ⊗■B+cris B

+
st

RΓcris (ℨ0
1 /O

0
FL
) RΓcris (ℨ0

1 /r
PD,0
L )N −nilpQp

RΓcris (𝔛1/Âl𝜋 ,st)
N −nilp
Qp

RΓcris (𝔛1/A×cris)Qp ⊗■B+cris B
+
st

𝜄0,l ≃

(Frobn )∗

𝜄0

(Frobn )∗

𝜋∗

𝜇∗n

≃

where the third vertical arrow is induced by

𝜇n : Âl𝜋 ,st → Âl ,st, tapn ↦→ (ta)p
n
, ∀a ∈ 𝜏 1

e
:=

{
a ∈ (OC \{0})/(1 +𝔪C )

���v (a) = 1
e

}
.

All but the left square commute by base change compatibility; that of the left follows from the invertibility of

Frob∗ on RΓcris (ℨ0
1 /O

0
FL
)Qp and the uniqueness of 𝜑-equivariant section 𝜄0,l [19, Theorem 2.12 (2)]. Thus it

provides the homotopy between 𝜀stHK,l and 𝜀stHK.

2.3.5 - Corollary. For Z ∈ RigK , one has a natural isomorphism

RΓFM
syn (Z ,r ) ≃ RΓBK

syn (Z ,r ).

Proof. The equivalence produced in the proposition being natural and not involving any special choices of

elements of L, it glues to the desired global equivalence. □

2.3.6. Therefore, our new arithmetic syntomic cohomology agrees with Colmez-Nizioł’s arithmetic syntomic

cohomology by [17, Proposition 4.32], although we still do not know whether the Hyodo-Kato morphism agree

with theirs.

We will denote RΓsyn (Z,r ) := RΓBK
syn (Z,r ) from now on.

3 Syntomic descent spectral sequence

3.1 Syntomic-proétale period map

3.1.1. Fundamental exact sequence in p-adic Hodge-theory. For r ∈ N and i ≥ 0, we have a strict exact

sequence of topological abelian groups

0→ Qp (r ) → (t−iBlog)𝜑=p
r ,N =0 → t−iB+dR/t

rB+dR → 0

For any X ∈ RigC , the above exact sequence upgrades to an exact sequence of sheaves on Xproét

0→ Qp (r ) → (t−iBlog)𝜑=p
r ,N =0 → t−iB+dR/t

rB+dR → 0,

where Blog = B[U ] [9, Proposition 2.25, Definition 2.27] with GK -action g (U ) = U + log[ g (p
♭ )

p♭
], Frobenius

action 𝜑(U ) = pU and monodromy action N = − d
dU . This can be also written as a bicartesian square (or a
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fibre square in the derived category)

Qp (r ) (t−iBlog)𝜑=p
r ,N =0

t rB+dR t−iB+dR.

Taking its cohomology and then i → +∞ , one obtains a fibre square

(3.1.1.1)

RΓproét (X ,Qp (r )) RΓproét (X ,Blog) [ 1t ]𝜑=p
r ,N =0

RΓproét (X ,t rB+dR) RΓproét (X ,B+dR) [
1
t ] .

refining the fibre square

RΓproét (X ,Qp (r )) RΓproét (X ,Blog [ 1t ])𝜑=p
r ,N =0

RΓproét (X ,t rB+dR) RΓproét (X ,BdR)

which we obtain by first taking i → +∞ then its cohomology.

3.1.2. Compatibilities with the geometric Hyodo-Kato morphism. Assume that X = ZC for some Z ∈
RigK . Then there are a natural isomorphism RΓproét (X ,t•B+dR) ≃ Fil• (RΓdR (Z/K ) ⊗■K BdR) compatible with

filtrations [9, Theorem 5.2] and a natural 𝜑-equivariant morphism RΓproét (X ,B) ← RΓB (X ) ≃ (RΓHK (X ) ⊗■F̆
Blog)N =0 [9, Theorem 4.1]. They are compatible with the geometric Hyodo-Kato morphism [9, Theorem 5.3]

for r ∈ N, i.e. there is a natural commutative diagram

(3.1.2.1)

RΓproét (X ,t−rB+dR) RΓdR (Z/K ) ⊗■K t−rB+dR

RΓproét (X ,B) (RΓHK (X ) ⊗■F̆ Blog)N =0.

𝜄
geom
HK

If moreover X is qcqs, then RΓproét (X ,BdR) ≃ RΓdR (Z/K ) ⊗■K BdR, and RΓproét (X ,Blog [ 1t ])N =0 ≃←
RΓ(X ,B[ 1t ])

≃← (RΓHK (X ) ⊗■F̆ Blog [ 1t ])N =0; in general, by covering X with qcqs opens, we obtain natural

equivalences and morphisms

(3.1.2.2)

RΓproét (X ,BdR) ≃ lim
U qcqs

RΓproét (U ,BdR)
≃ lim
U qcqs

(RΓdR (U /K ) ⊗■K BdR) ← ( lim
U qcqs

RΓdR (U /K )) ⊗■K BdR

≃ RΓdR (X ) ⊗■K BdR

(3.1.2.3)

RΓproét (X ,Blog [
1
t
])N =0 ≃ lim

U qcqs
RΓproét (U ,Blog [

1
t
])N =0

≃ lim
U qcqs

(RΓHK (U ) ⊗■F̆ Blog [
1
t
])N =0 ← (( lim

U qcqs
RΓHK (U )) ⊗■F̆ Blog [

1
t
])N =0

≃ (RΓHK (X ) ⊗■F̆ Blog [
1
t
])N =0

compatible with geometric Hyodo-Kato morphism.
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3.1.2.4 - Lemma. There is a natural (𝜑,N )-equivariant morphism

RΓHK (X ) ⊗■F̆ Blog → RΓ(X ,Blog)

inducing after taking (−)N =0 the 𝜑-equivariant morphisms in (3.1.2.3).

Proof. We will go through the proofs of [9, Theorem 4.1, Theorem 4.3]. Working locally, we may assume X = 𝔛𝜂

where 𝔛 ∈Mss,b
C . For compact intervals I ⊂ (0,+∞), consider the (𝜑,N )-equivariant isomorphisms

(3.1.2.5)

RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ Blog,I

𝜀stHK
≃→ RΓcris (𝔛1/A×cris) ⊗■Acris

Blog,I

≃ (RΓcris (𝔛1/A×cris) ⊗■Acris
BI ) ⊗■B Blog,I

→ RΓproét (X ,BI ) ⊗■BI Blog,I
≃→ RΓproét (X ,Blog,I )

where we have used [9, Proof of Theorem 4.3] for the third morphism. By taking limit over all compact

intervals I ⊂ (0,+∞), taking into account the fact that RΓcris (𝔛0
1 /O

0
F̆
)Qp is represented by a bounded complex

of F̆ -Banach spaces [9, Proof of Theorem 3.15 (ii)], we see that

RΓcris (𝔛0
1 /O

0
F̆
)Qp ⊗■F̆ B̂log → RΓproét (X , B̂log).

We conclude the construction by taking (−)N −nilp, using the N -nilpotency on RΓcris (𝔛0
1 /O

0
F̆
)Qp [9, Proof of

Theorem 3.15 (ii)]. Its compatibility with the given isomorphism is checked just as in [9, Proof of Theorem

4.1]. □

3.1.2.6 - Corollary. For r ∈ N, there is a natural commutative diagram

(3.1.2.7)

RΓproét (X ,t−rB+dR) RΓdR (Z/K ) ⊗■K t−rB+dR

RΓproét (X ,Blog) RΓHK (X ) ⊗■F̆ Blog.

𝜄
geom
HK

which is compatible with (3.1.2.1) after taking (−)N =0. □

3.1.3. syntomic-proétale period map. By (3.1.2), the fundamental exact sequence (3.1.1) induces natural

morphisms of fibre sequences

(3.1.3.1)

RΓproét (X ,Qp (r ))
≃→


RΓproét (X ,Blog [ 1t ])𝜑=p

r ,N =0

RΓproét (X ,t rB+dR) RΓproét (X ,BdR)

can


←


(RΓHK (X ) ⊗■F̆ Blog [ 1t ])𝜑=p

r ,N =0

Filr (RΓdR (Z/K ) ⊗■K BdR) RΓdR (Z/K ) ⊗■K BdR

𝜄
geom
HK


←


(RΓHK (X ) ⊗■F̆ B

+
st)𝜑=p

r ,N =0

Filr (RΓdR (Z/K ) ⊗■K B+dR) RΓdR (Z/K ) ⊗■K B+dR

𝜄
geom
HK


= RΓsyn (X ,r )
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where the second morphism becomes an isomorphism if X is qcqs. The diagram (3.1.3.1) composes to a

geometric syntomic-proétale comparison morphism 𝜌
geom
syn : RΓsyn (X ,r ) → RΓproét (X ,Qp (r )) between syn-

tomic cohomology and proétale cohomology, which induces an arithmetic one 𝜌arithsyn by taking GK -invariants

as follows

(3.1.3.2)

RΓsyn (Z,r ) RΓproét (Z,Qp (r ))

RΓsyn (X ,r ) RΓproét (X ,Qp (r )).

𝜌arithsyn

𝜌
geom
syn

3.1.4 - Remark. By (3.1.2.7), the maps in the construction of the geometric syntomic-proétale comparison map

(3.1.3.1) are actually induced by maps of data (A,B , 𝜄,r ), where A ∈ D(𝜑,N ) (ModcondQp
), B ∈ DF (ModcondQp

) :=
Fun(Zop,D (ModcondQp

)), 𝜄 = 𝜄
geom
HK and r ∈ N.

3.1.5. Fontaine-Messing period map. We would like to compare the above constructed period maps (3.1.3.2)

with another collection of period maps, the Fontaine-Messing period maps

𝛼FM
r : RΓsyn (X ,r ) → RΓproét (X ,Qp (r )),

which are defined by globalising the Fontaine-Messing period maps on semistable models 𝛼FM
r : RΓsyn (𝔛,r ) →

RΓét (𝔛,Zp (r ))Qp ≃ RΓproét (𝔛,Qp (r )), both in the arithmetic and geometric cases [17, §7] (recall the definition

of the Fontaine-Messing syntomic cohomology (2.3.1.2), (2.3.2.2)). They are constructed in a natural way so

that they satisify Galois equivariance: if X = 𝔛𝜂 with 𝔛 = ℨ ⊗OL OC such that ℨ ∈Mss
K with splitting field L,

then 𝛼
FM,geom
r are GL-equivariant; in particular, if X = Z ⊗K C , then 𝛼

FM,geom
r is GK -equivariant.

Whether these seemingly two types of period maps are homotopic, i.e. 𝜌syn = 𝛼FM in the underlying

homotopy category (both in geometric and arithmetic cases), is closely related to the uniqueness of (geometric)

p-adic period morphisms addressed by Nizioł [47, 48] in the algebraic setting and by Sally Gilles [29] in the

formally algebraic setting. Although the latter have treated seemingly only the case of proper semistable

models, its proofs contain a great amount of local constructions which we will employ to obtain the following

proposition.

3.1.6 - Proposition. The geometric syntomic-proétale period map 𝜌
geom
syn is naturally homotopic to the geometric

Fontaine-Messing period map 𝛼FM,geom
r .

Proof. By éh-hyperdescent, one may reduces to the case of X = 𝔛𝜂 , where 𝔛 ∈Mss,b
C is affine and descends to

ℨ ∈ Mss
K with splitting field L. Essentially by construction, it suffices to proves the natural commutativity of

the following diagram

RΓét (𝔛𝜂 ,Zp (r ))Qp RΓproét (𝔛𝜂 ,BI ) RΓproét (𝔛𝜂 ,BdR)

RΓFM
syn (𝔛,r ) RΓcris (𝔛1/A×cris)Qp

𝛼
FM,geom
r can can

where we have used the canonical isomorphism RΓ(𝔛) ≃→ RΓcris (𝔛1/A×cris) to identify the absolute log-

crystalline cohomology defining the Fontaine-Messing syntomic cohomology. Here, the vertical canonical

morphism can is defined in [9, Proof of Theorem 4.3] (as was used in (3.1.2.5) for the third morphism), which

actually factors as RΓcris (𝔛1/A×cris)Qp

𝛾CK→ RΓproét (𝔛𝜂 ,Ainf) → RΓproét (𝔛𝜂 ,BI ) where the first is induced by

Cesnavicius-Koshikawa’s 𝜑-equivariant comparison isomorphism [10, Theorem 5.4] and the latter is induced by

the canonical map of proétale period sheaves Ainf → BI . Moreover, the slanted canonical morphism can is in-

duced by the morphisms of sites (𝔛𝜂/B+dR,m)inf → (𝔛/A
×
cris)cris. The right triangle commutes by [9, Proposition

5.11], so it remains to show that the left square commutes.
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The upper left arrow being induced by maps of proétale sheaves Zp (r ) → Ainf → BI , we are thus reduced

to showing the natural commutativity of the following diagram

RΓét (𝔛𝜂 ,Zp (r ))Qp RΓproét (𝔛𝜂 ,Ainf)

RΓFM
syn (𝔛,r ) RΓcris (𝔛1/A×cris)Qp .

𝛼
FM,geom
r

can

𝛾CK

For this, we apply the aforementioned local constructions in Gilles’s works [29]: she constructed in op. cit., §8

for such 𝔛 a natural Lazard type period map 𝛼0
r : RΓsyn (𝔛,r ) → RΓét (𝔛𝜂 ,Zp (r ))Qp such that 𝜏≤r𝛼0

r is an

equivalence13, then she proved a natural identification 𝛼0
r ≃ 𝛼

FM,geom
r in op. cit., Théorème 9.114 on the one

hand, and that on the other hand the analogue of the above commutative diagram

RΓét (𝔛𝜂 ,Zp (r ))Qp RΓproét (𝔛𝜂 ,Ainf)

RΓFM
syn (𝔛,r ) RΓcris (𝔛1/A×cris)Qp .

𝛼0
r

can

𝛾CK

commutes by the step (ii) in the proof of op. cit., Lemme 9.11 (this step was a purely local calculation)15; hence

we are done. □

3.1.7 - Corollary. The arithmetic syntomic-proétale period map 𝜌arithsyn is homotopic to the arithmetic Fontaine-Messing

period map 𝛼FM,arith
r .

Proof. This follows from the Galois descent construction of 𝜌arithsyn and (3.1.6), since when composed with the

natural map RΓproét (Z,Qp (r )) → RΓproét (X ,Qp (r )), the period maps 𝜌arithsyn and 𝛼FM,arith
r give rise to homotopic

morphisms 𝜌geomsyn ≃ 𝛼
FM,geom
r by (3.1.6). □

3.1.8 - Corollary. Let Z ∈ RigK and r ∈ N. The the syntomic-proétale comparison maps 𝜌arithsyn for Z and 𝜌
geom
syn

for ZC become isomorphisms after truncation 𝜏≤r .

Proof. The geometric case follows from (!) [9, Theorem 7.2]. But alternatively, the geometric and arithmetic

cases follow respectively from the above proposition (3.1.6) and corollary ((3.1.6)), since we already know that the

truncated isomorphisms holds for the Fontaine-Messing period maps [17, Corollary 7.3] for smooth varieties,

which extends to singular cases by éh-hyperdescent. □
13 In op. cit., §8, the morphism 𝛼0

r , or more precisely its local and integral version 𝛼r ,Σ,𝜆 , was constructed directly as quasi-isomorphisms
of 𝜏≤r -truncated complexes but not for untruncated complexes , see the formula just before op. cit., Proposition 8.8. This formula was
deduced from op. cit., Proposition 8.6. But in fact, if we carefully look at the proof of this last proposition, we find that:

• Firsly, multiplication-by-t• morphism is defined even before the truncation, though it becomes an quasi-isomorphism only after
the truncation;

• Secondly, the multiplication-by-t r morphism and the morphism 𝛽 there are quasi-isomorphisms even before the truncation, cf. op.
cit., Lemma 5.3 and Lemma 5.8 respectively.

Therefore, as it turns out, the op. cit., Proposition 8.6 actually shows the existence of a forward morphism 𝛽 ′ : Kosz(𝜑,𝜕,F rR [u ,v ]Σ,Λ ) →
Kosz(𝜑,ΓΣ,Λ,R [u ,v ]Σ,Λ (r ) ) which becomes a quasi-isomorphism after the truncation 𝜏≤r . Taking respective Frobenius eigenspaces, one

obtains the untruncated map 𝛼0
r ,Σ,Λ, which is then globalised to be the untruncated morphism 𝛼0

r in the our text.
14 Again, her statement is for 𝜏≤r -truncated complexes, but what she proved was not that stronger. In fact, in her proof:

• Firstly, the properness hypothesis was not used there;
• Secondly, the morphism op. cit., (33) there which rewrites the (truncated) syntomic cohomology as (truncated) Frobenius eigenspace
of Acris (−) construction holds for untruncated complexes;

• Thirdly, the proof of identification reduces to that of op. cit., Lemma 9.2, which says that 𝜏≤r 𝛼FM
r ,Σ,Λ ≃ 𝜏≤r 𝛼0

r ,Σ,Λ, actually stays valid
for untruncated complexes, see op. cit., Proposition 7.5, or look at the original source of ideas [16, Theorem 4.16].

15 Let us use the notation of loc. cit.. As mentioned in the footnote (13), the Lazard type period map 𝛼0
r well-defined even before the

truncation, especially because the morphism 𝛽 is a quasi-isomorphism even before the truncation. Therefore, in the diagram loc. cit., (55),
it is unnecessary to take the truncation 𝜏≤r in order to obtain commutativity, the diagram itself untruncated is already commutative by
the same proof, chiefly thanks to the commutativity of the diagram loc. cit., (57), which was no more than a direct computation showing
that Bhatt-Morrow-Scholze’s 𝛽 is compatible with the morphism 𝛽 ′ of loc. cit..
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3.1.9 - Remark. Although one might argue that the corollary (3.1.6) can be proven directly by a geometric

truncated quasi-isomorphism statement (say of Bosco [9]) plus Galois descent, without passing through the

identification (3.1.7), we should stress that this Galois descent step might not work naively due to one important

difference between the rigid-analytic setting and the algebraic setting that, the Galois action on the rigid-

analytic geometric syntomic cohomology not being smooth nor having vanishing higher continuous Galois

cohomology groups, taking Galois fixed points is not an exact operation on the complex, which is contrary to

the case of algebraic varieties.

3.2 Construction of morphisms of spectral sequences

Before constructing morphisms of spectral sequences, we introduce a technical result of Nekovář-Nizioł.

3.2.1. Postnikov system on Bloch-Kato type diagrams. Let R be a condensed ring. Let A ∈
D(𝜑,N ) (ModcondR ) and B ∈ DF (ModcondR ) = Fun(Zop,D (ModcondR )) and a morphism 𝜄 : A → B . Also, let

r ∈ N. Given such data (A,B , 𝜄,r ), we will consider a specific type of Postnikov system of Csyn (r ) := Syn(A,B ,𝜄,r ) :=

fib(A𝜑=pr ,N =0 → B) (where the fixed points are derived) on the Bloch-Kato type limit diagram

Syn(A,B ,𝜄,r ) ≃



FilrB

A A ⊕ B

A A

N

(𝜑−pr ,𝜄)

(N ,0)
p𝜑−pr


in the direction of homotopy limit; namely, it consists of a finite collection of adjacent triangles

gr0Csyn (r ) gr1Csyn (r ) gr2Csyn (r )

Csyn (r )0 Csyn (r )1 Csyn (r )2 Csyn (r )3[1] [1] [1]

where

Csyn (r )0 := Syn(A,B ,𝜄,r ) :=



FilrB

A A ⊕ B

A A

N

(𝜑−pr ,𝜄)

(N ,0)
p𝜑−pr


, Csyn (r )1 :=


A ⊕ B

A A

(N ,0)
p𝜑−pr

 , Csyn (r )2 := [A] , Csyn (r )3 := 0.

so that

gr0Csyn (r ) = A ⊕ FilrB , gr1Csyn (r ) = A ⊕ (A ⊕ B), gr2Csyn (r ) = A.16

This gives rise to a Postnikov exact couple

D i ,j1 = H j (Csyn (r )i )
g
→ H j (Csyn (r )i−1 [1]) = H j+1 (Csyn (r )i−1) = D i−1,j+1

with associated spectral sequence which we call Postnikov spectral sequence

Ei ,j1 = H j (gri Csyn (r )) ⇒ lim−−→(· · · → D i ,j1
g
→ D i−1,j+11 → · · · )

16To extend to Csyn (r )• for any index • ∈ Z, one may set Csyn (r )•≥3 := 0 and Csyn (r )i := Csyn (r ) [i ] for i ≤ 0.
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(under certain conditions). When the filtration is finitely exhaustive, i.e. when Csyn (r )i [−i ]
≃→ Csyn for i ≪ 0,

this colimit becomes

lim−−→(· · · → H i+ j (Csyn (r )i [−i ])
g
→ H i+ j (Csyn (r )i−1 [−i + 1]) → · · · )

≃→ H i+ j (Csyn (r )).

3.2.2. Postnikov and hypercohomology spectral sequences. Let R and S be two condensed rings. Consider

a left exact functor F : Mod■R → Mod■S , e.g. F = HomR (S ,−) if S is an R-algebra. We denote by RF its right

derived functor.

Let A ∈ D+(𝜑,N ) (Mod■R) and B ∈ DF + (Mod■R) and a morphism 𝜄 : A → B , and r ∈ N. Applying

F to the above Posnikov system, one obtains a Postnikov system of RF (Csyn (r )) with graded pieces gri =

RF (gri Csyn (r )), and whence the associated Postnikov spectral sequence

limEi ,j1 = R jF (gri Csyn (r ))) ⇒ Ri+ jF (Csyn (r )).

On the other hand, without any Postnikov datum, we still have the hypercohomology exact couple

hypD i ,j2 = Ri+ jF (𝜏≤ j−1Csyn (r )) → Ri+ jF (𝜏≤ jCsyn (r )) =hypD i−1,j+12

and associated hypercohomology spectral sequence

hypEi ,j2 = RiF (H j (Csyn (r ))) ⇒ Ri+ jF (Csyn (r )).

The main technical result that we need is the following theorem, which relates the two spectral sequences

under very restrictive but still reasonable conditions.

3.2.3 - Proposition. Assume that we are in the setting (3.2.2). If the sequence

0→ H j (Csyn (r )) → H j (gr0Csyn (r )) → H j (gr1Csyn (r )) → H j (gr2Csyn (r )) → 0

is exact, or equivalently, the natural morphism in D (Mod■R)

(3.2.3.1) H j (Csyn (r )) →



H j (FilrB)

H j (A) H j (A) ⊕ H j (B)

H j (A) H j (A)

N

(𝜑−pr ,𝜄)

(N ,0)
p𝜑−pr


is an isomorphism for any j ∈ Z, then there is a natural morphism of exact couples (limD i ,j2 ,limEi ,j2 ) →
(hypD i ,j2 ,hypEi ,j2 ). Consequently, there is a natural morphism of spectral sequences limEi ,jt → hypEi ,jt which starts

from the E2-page with common abutment Ri+ jF (Csyn (r )), and for spectral filtraions we have limF ⊂ hypF .

Proof. This is a special case of Nekovář-Nizioł’s result [46, Theorem 2.18]. □

To apply this result, we consider the fundamental diagram for X ∈ RigC .

3.2.4. Cst-conjecture and fundamental diagrams. For X ∈ RigC partially proper or affinoid or X ∈ Rig†C
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quasi-compact, we say that the Cst-conjecture holds for X if the following commutative diagram

(FD+i ,r )

H i
syn (X ,r ) H i (FilrRΓinf (X /B+dR))

(H i
HK (X ) ⊗

■
F̆
Blog)𝜑=p

r ,N =0 H i
inf (X /B

+
dR),

𝜄
geom
HK

which we call the fundamental diagram, is bicartesian for any i = r ≥ 0, or equivalently (since by assumption

on X and using ⊗■-flatness of Blog we have H i ((RΓHK (X ) ⊗■F̆ Blog)𝜑=p
r ,N =0) ≃ (H i

HK (X ) ⊗
■
F̆
Blog)𝜑=p

r ,N =0 in

the derived sense) that

(FD+i ,r
′) H i

syn (X ,r ) ≃→



H i (FilrRΓinf (X /B+dR))

H i
HK (X ) ⊗

■
F̆
Blog H i

HK (X ) ⊗
■
F̆
Blog ⊕ H i

inf (X /B
+
dR)

H i
HK (X ) ⊗

■
F̆
Blog H i

HK (X ) ⊗
■
F̆
Blog

N

(𝜑−pr ,𝜄)

(N ,0)
p𝜑−pr


is an equivalence for i = r ≥ 0.

3.2.5 - Remark. Though the original conjecture [20] is stated with B+st in place of Blog, we prefer using the

latter as it is more geometric from the point of view of the Fargues-Fontaine curve [26]. We will refer to the

original conjecture as the B+st-coefficient Cst-conjecture.

3.2.6 - Remark. Assume that X = ZC with Z ∈ Rig†K or Z ∈ RigK .

(i) Assume that Z is smooth quasi-Stein (e.g. Stein or affinoid). Then for i > r , the diagram (FD+i ,r ) is

automatically bicartesian. Indeed, when i > r , the right vertical arrow in (FD+i ,r ) is an isomorphism, so we

are left to show that H i
syn (X ,r ) ≃→ (H i

HK (X ) ⊗
■
F̆
Blog)𝜑=p

r ,N =0. For this, recall that from definition (2.3.1.1)

and similarly argument concerning classicality of cohomology of the Hyodo-Kato part, we get an exact

sequence

H i−1 ((RΓdR (Z/K )⊗■KB+dR)/F
r ) → H i

syn (X ,r ) → (H i
HK (X )⊗

■
F̆
B+st)𝜑=p

r ,N =0 → H i ((RΓdR (Z/K )⊗■KB+dR)/F
r ).

But (RΓdR (Z/K ) ⊗■K B+dR)/F
r ≃ (Ω•Z/K (Z ) ⊗

■
K B

+
dR)/F

r

≃ Ω•Z/K (Z/K ) ⊗
■
K (B+dR/t

max{r−•,0})
which belongs to D [0,r−1] (Mod■K ), whence the left and right most terms of the above exact sequence

vanish for i > r .

(ii) Assume that Z is dagger qcqs or partially proper. If the Cst-conjecture holds for ZC , then (FD+i ,r ) is

bicartesian for 0 ≤ i ≤ r . Indeed, fix i ≥ 0 and run induction on r ≥ i . When r = i , this is the

Cst-conjecture. Now for the induction step, consider the following commutative diagram

(3.2.6.1)

0 H i
syn (X ,r ) (H r

HK (X ) ⊗■F̆ Blog)𝜑=p
r ,N =0 H i (F r (RΓdR (Z/K ) ⊗■K B+dR)) H i

dR (Z/K ) ⊗
■
K B

+
dR 0

0 H i
syn (X ,r + 1) (H i

HK (X ) ⊗
■
F̆
Blog)𝜑=p

r+1,N =0 H i (F r+1 (RΓdR (Z/K ) ⊗■K B+dR)) H i
dR (Z/K ) ⊗

■
K B

+
dR 0

0 H i
dR (Z/K ) ⊗

■
K C 0 H i

dR (Z/K ) ⊗
■
K C 0

≃ t t

⊕

≃ t t

⊕

⊕

whose top row is exact by induction hypothesis, whose second vertical arrow is exact by [13, Lemma
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3.39, and proof of Proposition 3.36] (cf. [9, Formula (7.15) and its following paragraph] for the case of

Blog in place of B+st), and whose third vertical arrow is an isomorphism since i ≤ r . Therefore, the bottom
row is isomorphism, from which we deduce by diagram chasing that the middle row is also exact, thus

showing the bicartesianness for (i ,r + 1).

3.2.7 - Example. Many cases of the Cst-conjecture have been established.

(i) For X proper, this is done by Colmez-Nizioł in [20, Theorem 6.2, Corollary 6.15] and by Bosco in [9,

Theorem 7.4] (plus the argument of [20, Corollary 6.15]).

(ii) For X smooth Stein, this is done by Colmez-Nizioł in [20, Theorem 6.14, Corollary 6.19] and by Bosco

in [9, Theorem 7.7] (plus the argument of [20, Corollary 6.19]).

(iii) For X smooth dagger affinoid, this is done by Colmez-Nizioł in [20, Theorem 6.14, Corollary 6.19] and

by Bosco in [9, Proof of Theorem 7.7] (plus the argument of [20, Corollary 6.19]).

(iv) For X smooth affinoid curve, this is done by Bosco in [9] (plus the argument of [20, Corollary 6.19]).

3.2.8. Now, we invert t in the fundamental diagram (FD+i ,r ), and define the complex in D (Mod■Qp
)

Csyn (r ) :=
[
(RΓHK (X ) ⊗■F̆ Blog [

1
t
])𝜑=pr ,N =0

𝜄
geom
HK→ (RΓinf (X /B+dR) ⊗

■
B+dR

BdR)/F r
]
.

Consider the commutative diagram

(FDi ,r )

H i (Csyn (r )) H i (F r (RΓinf (X /B+dR) ⊗
■
B+dR

BdR))

(H i
HK (X ) ⊗

■
F̆
Blog [ 1t ])𝜑=p

r ,N =0 H i
inf (X /B

+
dR) ⊗

■
B+dR

BdR
𝜄
geom
HK

When X is qcqs, the natural map Csyn (r ) → RΓproét (X ,Qp (r )) is qcqs, see (3.1.3.1).

3.2.9 - Remark. (i) For Z ∈ RigK , the natural morphism

Filr (RΓdR (Z/K ) ⊗■K B+dR) → Filr (RΓdR (Z/K ) ⊗■K BdR)

becomes an isomorphism after taking the canonical truncation 𝜏≤r . We may replace BdR by t− jB+dR for

j ∈ N and prove the same statement, hence t− jBdR is a K -Banach space so that [9, Corollary A.67] is

applicable. By éh-hyperdescent, we reduce to the case where Z is smooth affinoid, this is because the cofibre

of Filr (Ω•Z/K ⊗
■
K B

+
dR) → Filr (Ω•Z/K ⊗

■
K BdR) is concentrated in degrees > r .

(ii) For X ∈ RigC , the natural morphism

FilrRΓinf (X /B+dR) → Filr (RΓinf (X /B+dR) ⊗
■
B+dR

BdR)

becomes an isomorphism after taking the canonical truncation 𝜏≤r . Again, we may replace BdR by t− jB+dR
for j ∈ N. By éh-hyperdescent, we may assume X to be smooth affinoid, then using Elkik’s algebraisation

technique [25, Theorem 7, Remark 2], we may assume X descends to a smooth affinoid Z over some finite

extension L/K . Then the statement follows from (i).

3.2.10 - Lemma. For partially proper X ∈ RigC , we there is a natural exact sequence

0→ (H i
HK (X ) ⊗

■
F̆
Blog)𝜑=p

i ,N =0 → (H i
HK (X ) ⊗

■
F̆
Blog [

1
t
])𝜑=pi ,N =0 → H i

HK (X ) ⊗
■
F̆
BdR/B+dR → 0.

Proof. For X smooth affinoid, this is [9, Formula (7.15)]. In general, we would like to take inverse limit; but to

avoid the problem of exchanging countable inverse limit and tensor product − ⊗■
F̆
Blog [ 1t ], we start by showing
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that [9, Formula (7.15)] remains true for partially proper spaces. Indeed, for qcqs U ∈ Rig†C , we have an exact

sequence

0→ E (H i
HK (U )) ⊗O O(i ) → E (H i

HK (U )) ⊗O O(i + j ) → 𝜄∗ (H i
HK (U ) ⊗F̆ t

− jB+dR/B
+
dR) → 0

of coherent sheaves on the Fargues-Fontaine curve, where, E (H i
HK (U )) is the vector bundle over the Fargues-

Fontaine curve attached to the finite (𝜑,N )-module H i
HK (U ) over F̆ . Taking global sections, we obtain an

exact sequence of F̆ -vector spaces

(3.2.10.1) 0→ (H i
HK (U ) ⊗F̆ Blog)𝜑=p

i ,N =0 → (H i
HK (U ) ⊗F̆ t

− jBlog)𝜑=p
i ,N =0 → H i

HK (U ) ⊗F̆ t
− jB+dR/B

+
dR → 0.

because the first cohomology of E (H i
HK (U )) ⊗O O(i ) vanishes by non-negative Harder-Narasimhan slopes

considerations [9, Theorem 3.30 (ii)]. As N is nilpotent on H i
HK (U ) and one can write Blog = B̂log

N =nilp
where

B̂log := lim←−−I BI ⟨U ⟩ is a F̆ -Fréchet space, the above exact sequence can be written as

0→ (H i
HK (U ) ⊗F̆ B̂log)𝜑=p

i ,N =0 → (H i
HK (U ) ⊗F̆ t

− j B̂log)𝜑=p
i ,N =0 → H i

HK (U ) ⊗F̆ t
− jB+dR/B

+
dR → 0.

Now B̂log being a F̆ -Fréchet space, passing to limit with respect to an strictly increasing covering of any

partially proper X by qcqs smooth dagger affinoid U , and using [9, Corollary A.67 (i)] and the vanishing

R1 lim←−−U (H
i
HK (U ) ⊗

■
F̆
t− jBlog)𝜑=p

i ,N =0 = 0 for i , j ∈ N (cf. proof of [9, Formula (7.17)]), one obtains the exact

sequence

0→ (H i
HK (X ) ⊗

■
F̆
B̂log)𝜑=p

i ,N =0 → (H i
HK (X ) ⊗

■
F̆
t− j B̂log)𝜑=p

i ,N =0 → H i
HK (X ) ⊗

■
F̆
t− jB+dR/B

+
dR → 0.

Again by N -nilpotency on RΓHK (X ), this can be rewritten as the exact sequence

(3.2.10.2) 0→ (H i
HK (X ) ⊗

■
F̆
Blog)𝜑=p

i ,N =0 → (H i
HK (X ) ⊗

■
F̆
t− jBlog)𝜑=p

i ,N =0 → H i
HK (X ) ⊗

■
F̆
t− jB+dR/B

+
dR → 0.

Finally, letting j → +∞, one obtains the desired exact sequence. □

3.2.11 - Lemma. For partially proper X ∈ RigC , the natural morphism

RΓsyn (X ,r ) → Csyn (r )

becomes an isomorphism after taking the canonical truncation 𝜏≤r .

Proof. This follows from the observation that 𝜏≤rCsyn (r ) is naturally isomorphic to the filtered colimit over

i ≥ r of 𝜏≤rRΓsyn (X ,i ) by (3.2.9, ii), the exact sequence (3.2.10.2) and the diagram (3.2.6.1) but assuming in

the last diagram the exactness of the first two rows only at the middle terms. □

3.2.12 - Proposition (Colmez-Nizioł, Bosco). The square (FDi ,r ) is bicartesian for all i ,r ≥ 0 such that i ≤ r in
the following cases:

(i) X is a proper rigid space over C .

(ii) X is a smooth dagger affinoid rigid space over C .

(iii) X is a smooth Stein (dagger17) rigid space over C .

Proof. (i) For X proper, the semistable comparison (cf. [20, Theorem 6.2], [9, Theorem 7.4]) and the degenera-

tion at the E1-page of Hodge-to-de Rham spectral sequence imply that the diagram (FDi ,r ) is bicartesian for any

17For partially proper dagger rigid space X ∈ Rig†C , there is a natural isomorphism RΓ (X ,F† ) → RΓ (X̂ ,F ) for éh-sheaves F ∈
{RΓHK (−) ,F •RΓinf (−/B+dR ) } on Rig†C (2.2.1).Therefore, there is no need here to distinguish between dagger and genuine rigid spaces in
the partially proper case.
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i ,r ≥ 0. Indeed, by loc. cit., for any i ≥ 0, we have H i
proét (X ,Qp ) ≃ H i

ét (X ,Qp ) which is a finite-dimensional

Qp -vector space, and we have a natural isomorphism

H i
ét (X ,Qp ) ⊗Qp Blog [

1
t
] ≃ H i

HK (X ) ⊗F̆ Blog [
1
t
]

compatible with (𝜑,N )-action, which induces a natural isomorphism

H i
ét (X ,Qp ) ⊗Qp BdR ≃ H i

inf (X /B
+
dR) ⊗

■
B+dR

BdR

compatible with filtrations. In fact, the first natural isomorphism is induced by RΓproét (X ,Qp (r )) ≃
𝜏≤rRΓproét (X ,Qp (r )) ≃ RΓsyn (X ,r ) → RΓHK (X ) ⊗■F̆ Blog [ 1t ] for r ≫ 0.

(ii) For X smooth dagger affinoid, the diagram (FDi ,r ) is bicartesian for any i ,r ≥ 0. Indeed, we may freely

use Tate twist to reduce to the case i = r . The bicartesiannes then follows from the bicartesianess of the (FD+i ,r )

and [9, Formula (7.15)]. More precisely, we may assume by smoothness and [25, Theorem 7, Remark 2] that

X = ZC for some smooth dagger affinoid rigid space over some finite extension L/K . We have

0 H r
syn (X ,r ) (H r

HK (X ) ⊗■F̆ Blog)𝜑=p
r ,N =0 H r (Filr (RΓdR (Z/L) ⊗L B+dR)) H r

dR (Z/L) ⊗L B
+
dR 0

0 H r (Csyn (r )) (H r
HK (X ) ⊗■F̆ Blog [ 1t ])𝜑=p

r ,N =0 H r (Filr (RΓdR (Z/L) ⊗L BdR)) H r
dR (Z/L) ⊗L BdR 0

H r
dR (Z/L) ⊗L BdR/B+dR 0 H r

dR (Z/L) ⊗L BdR/B+dR 0,

≃ (3.2.11)

⊕

≃ (3.2.9)

⊕

⊕ (id,0)

whose first row and all columns are exact. Here, the first row is exact by the bicartesianess of the (FD+i ,r ) in the

case of X smooth dagger affinoid, and the second column is exact by (3.2.10). We deduce from it the exactness

of the second row.

(iii) For X smooth Stein, the proof is the same as in (ii). □

3.2.13 - Remark. The proof of (ii) actually shows that for partially proper X ∈ RigC , by using suitable

Tate twists, the bicartesianness of (FD+i ,r ) implies formally that of (FDi ,r ) thanks to (3.2.9), (3.2.10) and (3.2.11).

Therefore, any partially proper X ∈ RigC satisfying Cst-conjecture, such as small varieties18 listed in [20,

Theorem 8.1] (including those in (??), e.g. proper, smooth Stein, smooth dagger affinoid, smooth affinoid curve)

and the varieties that are products of proper varieties and Stein varieties [20, Proposition 8.17]19, are immediate

instances at hand.

We are now ready to construct morphisms of spectral sequences.

3.2.14. Assume (FDi ,r ) is bicartesian for any i ,r ≥ 0. Then there exists by (3.2.3) a natural morphism of

spectral sequences
limEi ,jt H i+ j (Csyn (r )GK )

hypEi ,jt H i+ j (Csyn (r )GK )

starting from the E2-page with
limEi ,j1 := H j (gri Csyn (r )GK )

18Recall that small varieties include proper varieties, qcqs dagger affinoids, analytification of algebraic varieties, certain tubular neigh-
bourhoods of subvarieties of proper varieties or complements of such tubular neighbourhoods. More concretely speaking, a (smooth)
dagger variety is said to be small if its de Rham cohomology is finite-dimensional.

19In loc. cit., the proper factor was assumed to be smooth. But in fact, the argument there goes through even if we drop out the
smoothness of the proper factor, cf. [9, Proof of Theorem 7.4].
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hypEi ,j2 := H i (GK ,H j (Csyn (r ))).

3.2.15. Before Postnikov limit spectral sequence, we have another natural morphism of spectral sequences

mapping to it
synEi ,jt H i+ j (RΓsyn (Z ,r )) H i+ j

syn (Z ,r )

limEi ,jt H i+ j (Csyn (r )GK )

≃

starting from the E1-page from the Postnikov limit type syntomic descent spectral sequence associated to the

similar Postnikov system on RΓsyn (Z,r )

synEi ,j1 := H j (gri RΓsyn (Z,r )),

whose E2-page yields
synEi ,j2 := H i (Syn(H j

HK (Z ) ,H
j
dR (Z/K ) ,𝜄

arith
HK ,H j (F rRΓdR (Z/K ) ) ) ).

3.2.16. The hypercohomology spectral sequence maps naturally to the Hochschild-Serre spectral sequence for

the proétale cohomology

hypEi ,jt H i+ j (Csyn (r )GK )

HSEi ,jt H i+ j (RΓproét (X ,Qp (r ))GK ) H i+ j
proét (Z,Qp (r ))≃

starting from the E2-page by (3.1.3.1), with

HSEi ,j2 := H i (GK ,H j
proét (X ,Qp (r ))).

3.2.17. Morphisms of spectral sequences. Combining the constructions (3.2.15), (3.2.14) and (3.2.16) alto-

gether, one obtains a sequence of natural morphisms of spectral sequences

synEi ,jt H i+ j
syn (Z,r )

limEi ,jt H i+ j (Csyn (r )GK )

hypEi ,jt H i+ j (Csyn (r )GK )

HSEi ,jt H i+ j
proét (Z,Qp (r ))

starting at the E2-page whenever the fundamental diagram (FDi ,r ) is bicartesian for ZC and for any i ,r ≥ 0;

this is satisfied for example if Z is partially proper and if the Cst-conjecture (3.2.4) holds for ZC , by (3.2.13) and

(3.2.6, ii).

3.3 Syntomic descent spectral sequence

Let us first make a digression to certain Galois cohomology groups, following [28, Chapitre I, §3].

3.3.1 - Definition (Fontaine-Perrin-Riou). Let V be a solid Qp -representation of GK .
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(i) We define H i
st (GK ,V ) as the i -th cohomology group of the homotopy limit

H 0 (GK ,V ⊗■Qp
B+dR)

H 0 (GK ,V ⊗■Qp
Blog [ 1t ]) H 0 (GK ,V ⊗■Qp

Blog [ 1t ] ⊕V ⊗Qp BdR)

H 0 (GK ,V ⊗■Qp
Blog [ 1t ]) H 0 (GK ,V ⊗■Qp

Blog [ 1t ])

N

(𝜑−pr ,𝜄)

(N ,0)
p𝜑−pr


and call it geometric continous Galois cohomology ofV .

(ii) An extension 0→V →W →W ′ → 0 of solid Qp -representations of GK is called an st-extension if the

sequence

0→ H 0 (GK ,V ⊗■Qp
Blog [

1
t
]) → H 0 (GK ,W ⊗■Qp

Blog [
1
t
]) → H 0 (GK ,W ′ ⊗■Qp

Blog [
1
t
]) → 0

is exact in Mod■F .

(iii) An extension 0→V →W →W ′ → 0 of solid Qp -representations of GK is called an B+dR-exact extension

if the sequence

0→ H 0 (GK ,V ⊗■Qp
B+dR) → H 0 (GK ,W ⊗■Qp

B+dR) → H 0 (GK ,W ′ ⊗■Qp
B+dR) → 0

is exact in Mod■K .

3.3.2 - Remark. IfV is a continuous finite-dimensional Qp -representation of GK , then H 0 (GK ,V ⊗Qp Blog [ 1t ])
is always finite-dimensional with F -dimension at most equal to dimQp V by Fontaine’s period ring formalism.

3.3.3 - Remark. Let S be any profinite set and W ′ = Qp [S ]■ with trivial GK -action. Then an extension

0 → V → W → Qp → 0 is an st-extension (resp. a B+dR-exact extension) if and only if there is a Galois

equivariant Qp -linear section of X → Qp [S ]■, where X is defined as the pushout

V W

V ⊗■Qp
Blog [ 1t ] X

©«
resp.

V W

V ⊗■Qp
B+dR X

ª®®®®¬
in Mod■Qp

. Indeed, the "exact" extension property amounts to a F -linear (resp. K -linear) section of

H 0 (GK ,W ⊗■Qp
Blog [ 1t ]) → F [S ]■ (resp. of H 0 (GK ,W ⊗■Qp

B+dR) → K [S ]■) by (the proof of) [28, I, Proposition

3.3.7]. Using the fact that H 0 (GK ,Qp [S ]■ ⊗■Qp
Blog [ 1t ]) = F [S ]■ (resp. H 0 (GK ,Qp [S ]■ ⊗■Qp

B+dR) = K [S ]
■)

which is a compact projective object in Mod■F (resp. in Mod■K ), this is equivalent to the desired existence of

section.

3.3.4 - Remark. Let V be a flat solid Qp -representation of GK . We compare H i
st (GK ,V ) with H i

g (GK ,V ) of
Fontaine-Riou [28, I, 3.3.3].

First, recall the definition of loc. cit.: consider the sequence in Mod■Qp [GK ]

(Sg ) 0→ Qp → Blog [
1
t
] → Blog [

1
t
] ⊕ Blog [

1
t
] ⊕ BdR/B+dR → Blog [

1
t
] → 0

with a ↦→ a, b ↦→ ((𝜑 − 1)b ,N b , 𝜄p (b)), (b1,b2,c ) ↦→ (N b1 − (p𝜑 − 1)b2), which is exact; tensoring this with V ,

we still get an exact sequence in Mod■Qp [GK ]

(Sg (V )) 0→V →V ⊗■Qp
Blog [

1
t
] →V ⊗■Qp

(Blog [
1
t
] ⊕ Blog [

1
t
] ⊕ BdR/B+dR) →V ⊗■Qp

Blog [
1
t
] → 0.
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The termwise Galois invariant H 0 (GK ,−) of this resolution complex calculates the cohomology H i
g (GK ,V ).

Mimicking this procedure, we have exact sequences in Mod■Qp [GK ]

(Sst) 0→ Qp → Blog [
1
t
] ⊕ B+dR → Blog [

1
t
] ⊕ Blog [

1
t
] ⊕ BdR → Blog [

1
t
] → 0

with a ↦→ (a,a), (b ,c ) ↦→ ((𝜑 − 1)b ,N b , 𝜄p (b) − c ), (b1,b2,c ) ↦→ (N b1 − (p𝜑 − 1)b2), and

(Sst (V )) 0→V →V ⊗■Qp
(Blog [

1
t
] ⊕ B+dR) →V ⊗■Qp

(Blog [
1
t
] ⊕ Blog [

1
t
] ⊕ BdR) →V ⊗■Qp

Blog [
1
t
] → 0.

By our definition, the termwise Galois invariant H 0 (GK ,−) of this resolution complex calculates the cohomol-

ogy H i
st (GK ,V ).

3.3.5 - Proposition. LetV be a flat solid Qp -representation of GK . Let 𝜈 ∈ {g ,st}.

(i) The natural map H 0
𝜈 (GK ,V ) → H 0 (GK ,V ) is an isomorphism.

(ii) The natural map H 1
𝜈 (GK ,V ) → H 1 (GK ,V ) is injective, and identifies H 1

𝜈 (GK ,V )(S ) with the sub-Qp -vector

space of H 1 (GK ,V ) (S ) classifying the st-extensions if 𝜈 = g ( resp. st- and B+dR-exact extension if 𝜈 = st)W

of Qp [S ]■ byV .

In particular, H 1
st (GK ,V ) ↩→ H 1

g (GK ,V ) ↩→ H 1 (GK ,V ).

We ignore whether the map H 1
st (GK ,V ) ↩→ H 1

g (GK ,V ) is in practice an isomorphism or not.

Proof. For 𝜈 = g , it is essentially contained in [28, I, Proposition 3.3.7]. It remains to establish the iden-

tification statement. Notice that H 1 (GK ,V ) (S ) = Ext1Qp [GK ] (Qp [S ]■,V ) and H 1 (GK ,V ⊗■Qp
Blog [ 1t ]) (S ) =

Ext1Qp [GK ] (Qp [S ]■,V ⊗Qp Blog [ 1t ]). Then we may argue exactly as in the proof of loc. cit., simply by replacing

Qp by Qp [S ]■, using the remark (3.3.3).

For 𝜈 = st, the proof is the similar, noticing that [W ] ∈ ker(H 1 (GK ,V ) → H 1 (GK ,V ⊗■Qp
(Blog [ 1t ]⊕B+dR))) if

and only if [W ] ∈ ker(H 1 (GK ,V ) → H 1 (GK ,V ⊗■Qp
Blog [ 1t ]) as well as [W ] ∈ ker(H 1 (GK ,V ) → H 1 (GK ,V ⊗■Qp

B+dR), so if and only if 0 → V →W → Qp → 0 is an st- and B+dR-exact extension by (3.3.3). Similarly for

S -valued points. □

Now let us come back to our syntomic descent spectral sequence. We are going to interpretate the E2-page

of the syntomic descent spectral sequence (3.2.15) as Galois cohomology groups.

3.3.6. First, we interpretate each term of synEi ,j1 , which are on the arithmetic level, as the Galois invariants of

geometric objects.

(i) For de Rham cohomology, we have H j
dR (Z/K ) ⊗

■
K B

+
dR ≃ H

j
inf (ZC /B

+
dR) for any Z ∈ Rig(†)K by flatness of

B+dR in Mod■K . Using the nuclearity of H j
dR (Z/K ) over K , we obtain by (1.3.5) that

H j
dR (Z/K ) ⊗

■
K H

0 (GK ,B (+)dR ) ≃ H
0 (GK ,H j

dR (Z/K ) ⊗
■
K B

(+)
dR ),

whence

H j
dR (Z/K ) ≃ H

0 (GK ,H j
inf (ZC /B

+
dR)) ≃ H

0 (GK ,H j
inf (ZC /B

+
dR) ⊗

■
B+dR

BdR).

(ii) As for the cohomology of the filtration part, we have that

H j (F rRΓdR (Z/K )) ≃ H 0 (GK ,H j (F rRΓinf (ZC /B+dR))) ≃ H
0 (GK ,H j (F r (RΓinf (ZC /B+dR) ⊗

■
B+dR

BdR)))

for any Z ∈ Rig(†)K . Indeed, the filtration F •RΓdR (Z/K ) is finite (and separated), because Z is éh-

locally smooth of the same dimension d , so the naive truncation filtration on F •Ω•Z/K ,éh becomes zero

at F d+1. We can write FilrHdgRΓinf (ZC /B+dR) ≃ F r (RΓdR (Z/K ) ⊗■K B+dR) as an iterated extension of
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gr0RΓdR (Z/K ) ⊗■K t rB+dR by gr1RΓdR (Z/K ) ⊗■K t r−1B+dR, ..., gr
r−1RΓdR (Z/K ) ⊗■K tB+dR and then by

F rRΓdR (Z/K ) ⊗■K B+dR; then applying the Galois cohomology computation (1.3.11, i), we get the first

isomorphism. For the second isomorphism, since the filtration F •RΓdR (Z/K ) is bounded from below,

say stablising from • ≥ N + 1 on for some N ≥ r ; so F r (RΓdR (Z/K ) ⊗■K BdR) is an iterated extension of

F NRΓdR (Z/K ) ⊗■K BdR/t r−N B+dR by F N −1RΓdR (Z/K ) ⊗■K C (r − N + 1), ..., F r+1RΓdR (Z/K ) ⊗■K C (−1)
then by F r (RΓdR (Z/K ) ⊗■K B+dR); then applying the Galois cohomology computation (1.3.11, i), we get

the second isomorphism.

(iii) For the Hyodo-Kato part, we have

H j
HK (Z ) ≃ H

0 (GK ,H j
HK (ZC ) ⊗F̆ Blog [

1
t
])

for Z ∈ Rig(†)K which are qcqs (2.1.22) (2.2.6) or partially proper (2.2.7).

As a result, for any Z ∈ Rig(†)K that is qcqs or partially proper, the E2-term synEi ,j2 is the i -th cohomology

group of the homotopy limit

H 0 (GK ,H j (Filr (RΓinf (ZC /B+dR) ⊗
■
B+dR

BdR)))

H 0 (GK ,H j
HK (ZC ) ⊗

■
F̆
Blog [ 1t ]) H 0 (GK ,H j

HK (ZC ) ⊗
■
F̆
Blog [ 1t ] ⊕ H

j
inf (ZC /B

+
dR) ⊗

■
B+dR

BdR)

H 0 (GK ,H j
HK (ZC ) ⊗

■
F̆
Blog [ 1t ]) H 0 (GK ,H j

HK (ZC ) ⊗
■
F̆
Blog [ 1t ])

N

(𝜑−pr ,𝜄)

(N ,0)

p𝜑−pr


,

thus finishing our interpretation.

Finally, we focus on the proper case.

3.3.7. Proper case. Let Z ∈ RigK be proper. By the semistable comparison theorem (3.2.12, i), the above

diagram is identified with

H 0 (GK ,H j
ét (ZC ,Qp ) ⊗Qp t

rB+dR))

H 0 (GK ,H j
ét (ZC ,Qp ) ⊗Qp Blog [ 1t ]) H 0 (GK ,H j

ét (ZC ,Qp ) ⊗Qp Blog [ 1t ] ⊕ H
j
ét (ZC ,Qp ) ⊗Qp BdR)

H 0 (GK ,H j
ét (ZC ,Qp ) ⊗Qp Blog [ 1t ]) H 0 (GK ,H j

ét (ZC ,Qp ) ⊗Qp Blog [ 1t ]).

N

(𝜑−pr ,𝜄)

(N ,0)

p𝜑−pr


Hence, we can identify

(3.3.7.1) synEi ,j2 = H i
st (GK ,H

j
ét (ZC ,Qp (r ))).

A sanity check through the constructions implies that the morphism of spectral sequences on the E2-page
synEi ,j2 →

HSEi ,j2 is identified with the natural map H i
st (GK ,H

j
ét (ZC ,Qp (r ))) → H i (GK ,H j

ét (ZC ,Qp (r ))).

3.3.8 - Remark. (i) As we can see by degeneration of Hodge-to-de Rham spectral sequence at the E1-page

for proper Z ∈ RigK , the map H j (F rRΓdR (Z/K )) → H j
dR (Z ) is injective onto F rH j

dR (Z ), with cokernel

identified with H j
dR (Z/K )/F

r ≃ H 0 (GK , (H j
dR (Z/K ) ⊗K BdR)/F r ) ≃ H 0 (GK , (H j

inf (X /B
+
dR) ⊗

■
B+dR

BdR)/F r ).
The same argument as above using the semistable comparison theorem (3.2.12, i) shows that we can also

identify
synEi ,j2 = H i

g (GK ,H
j
ét (X ,Qp (r ))).
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(ii) Alternatively, one can show directly that H i
st (GK ,V )

≃→ H i
g (GK ,V ) under the condition that V ⊗■Qp

BdR ≃ (M ,Fil•) ⊗■K BdR is an isomorphism compatible with filtrations for certain filtered K -module (M ,Fil•).
This applies for example to V = H j

ét (ZC ,Qp (r )) for proper Z ∈ RigK by semi-stable comparison theorem

(3.2.12, i). Indeed, the exact sequence 0→ FilrM → M → M /Filr → 0 is identified, by computation of Galois

cohomology of C (i ) (1.3.11, i), with the exact sequence

0→ H 0 (GK ,Filr (M ⊗K BdR)) → H 0 (GK ,M ⊗K BdR) → H 0 (GK , (M ⊗K BdR)/F r ) → 0.

Under the assumption, this is again identified with

(3.3.8.1) 0→ H 0 (GK ,V ⊗Qp t
rB+dR) → H 0 (GK ,V ⊗Qp BdR) → H 0 (GK ,V ⊗Qp BdR/t rB+dR) → 0.

This implies immediately that H i
st (GK ,V )

≃→ H i
g (GK ,V ) by comparing the termwise Galois invariants

H 0 (GK ,−) of the complexes (Sg (V )) and (Sst (V )).

4 Chern classes of vector bundles and regulators

4.1 First Chern class maps

4.1.1. Crystalline construction. Let us first recall Tsuji’s construction of the log-crystalline first Chern class

(following Kato) [55, (2.2.3)]. Let Z be an integral and quasi-coherent log-scheme over a quasi-coherent log

pd-scheme S ♯ = (S ,L,I , 𝛾) with p ∈ OS nilpotent.

Assume first that there is a log pd-S ♯-smooth thickening Z ↩→ P with log pd-envelope Z ↩→ D (if Z

is moreoever log affine, then there is a universal coordinate such thickenings P univ [4, 1.4, Remark (iii)], which

however is not necessarily of finite type). Our goal is to construct a map

M gp
Z
→ OD ⊗OP 𝜔•

P /S ♯ [1]

in D (Zét,Z). This map will be constructed only in the derived category, as the composition

(4.1.1.1) M gp
Z

≃← (1 + JD → M gp
D )

(log,dlog)
→ (OD → OD ⊗OP 𝜔1

P /S ♯ → · · · ) = OD ⊗OP 𝜔•
P /S ♯ [1]

in D (Zét,Z), where 1 + JD and M gp sit respectively at cohomological degrees −1 and 0.

In general, we follow the procedure of [4, 1.6, Remark] using an embedding system E = {Z• ↩→ P•}; such
liftings form a cofiltered system [35, (2.21)]. Let Z• → D• be the log pd-envelopes of Z• → P•, defined by the

pd-ideals JD• := ker(OD• → OZ• ). We have an adjoint pair of topos

𝜃∗ : Z ∼
ét → Z ∼

•,ét : 𝜃∗

and their derived functors 𝜃∗ ⊣ R𝜃∗. We have a map by (4.1.1.1)

(4.1.1.2) 𝜃∗M gp
Z

= M gp
Z•
→ OD• ⊗OP• 𝜔

•
P•/S ♯ [1]

in D (Zét,Z), which induces by adjunction the log-crystalline first Chern class map

(4.1.1.3) c cris
1,Z /S ♯ : M

gp
Z
→ R𝜃∗ (OD• ⊗OP• 𝜔

•
P•/S ♯ ) [1] ≃ Ru

log

Z /S ♯∗OZ /S ♯ [1]

where the last canonical isomorphism is given by [35, Proposition 2.20].
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4.1.2 - Lemma (Compatibility of log-crystalline first Chern class maps). For any commutative diagram

Z Z ′

S ♯ S ′♯

g

f

with Z ′ an integral and quasi-coherent log-scheme over another quaso-coherent log pd-scheme S ′♯ with p ∈ OS ′

nilpotent such that the underlying morphism of schemes is locally of finite type, the following diagram

M gp
Z

g ∗M gp
Z ′

Ru log
Z /S ♯∗OZ /S ♯ [1] g ∗Ru log

Z ′/S ′♯∗
OZ ′/S ′♯ [1]

c cris
1,Z /S ♯

c cris
1,Z ′/S ′♯

in D (Zét,Z) commutes.

Proof. It is easily checked by choosing compatible embedding systems, which is possible by existence of uni-

versal coordinate thickenings. □

4.1.3. Characteristic p setting. By this we mean that S ♯ is a fine log pd-scheme endowed with a Frobenius

action F lifting that of S ♯/p and Z is a fine log-scheme in characteristic p over S ♯.

4.1.4 - Lemma. Let Z → S ♯ be a characteristic p setting. Consider the natural Frobenius action 𝜑 on Ru∗OZ /S ♯ .

Then c cris
1,Z /S ♯

factors through

M gp
Z
→ (Ru∗OZ /S ♯ )𝜑=p .

Proof. The embedding systems considered in (4.1.1) can be taken to be equipped with compatible Frobenius

liftings E = {Z• ↩→ P•}, whose log pd-envelopes Z• ↩→ D• are equipped with induced compatible Frobenius

liftings FD• . The Frobnius action on Ru∗OZ /S ♯ ≃ R𝜃∗ (OD• ⊗OP• 𝜔
•
P•/S ♯ ) is induced by FD• and FP• . The map

(4.1.1.2) whence (4.1.1.3) is Frobenius equivariant. Then we are done since 𝜑 = p on M gp
Z

for Z in characteristic

p . □

4.1.5 - Example. Let L be a finite extension of Qp with residue field kL . Let ℨ be a semistable formal scheme

over OL with log-structure Mℨ → Oℨ induced by its special fibre. Let 𝔛 = ℨ ⊗O×L O×C .

Consider the following p-adic formal log pd-schemes:

• SpfZp with trivial log-structure,

• SpfOtriv
FL

,

• Spf r PD,0L with log-structure induced by the ta ’s for a ∈ (𝔪L/𝔪2
L)\{0}, together with log pd-thickening

p0 : SpecO0
FL ,1

↩→ Spf r PD,0L ,

• Spf r PDL with log-structure induced by the ta ’s for a ∈ (𝔪L/𝔪2
L)\{0}, where l is a OFL -class in

(𝔪L/p𝔪L)\{0} determining a log pd-thickening pl : SpecO×L,1 ↩→ Spf r PDL lifting p0,

• SpfO0
FL

:=Wn (kL)0,
• SpfO×L ,
• SpfA×cris,

• Spf Âl ,st, where l is a OF̆ -class in (𝔪C /p𝔪C )\{0}.
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They have respectively SpecFp , Spec k trivL , Spec kL{ta} and Spec k0L as reduction modulo p which all receive

maps from ℨ0
1 , and are related by morphisms of p-adic formal log pd-rings

Zp → Otriv
FL
→ r PD,0L O0

FL
.

p0

Applying the construction (4.1.1) to these settings, one obtains respective first Chern class maps

• c cris1,ℨn
for ℨn over S ♯ = Zp or Otriv

FL
,

• cPD
1,ℨ0

1
for S ♯ = r PD,0L , and cPD1,ℨ1,l

for S ♯ = r PDL ,

• cHK
1,ℨ0

1
for S ♯ = O0

FL
,

• c crdR1,ℨn
for ℨn over S ♯ = O×L ,

• cAcris
1,𝔛n

for 𝔛n over S ♯ = A×cris,

• c st1,𝔛1,l
for S ♯ = Âl ,st.

4.1.6 - Lemma. The first Chern class maps cPD
1,ℨ0

1
and cHK

1,ℨ0
1
factor respectively through

cPD
1,ℨ0

1
: M gp

ℨ0
1

→ (Ru∗Oℨ0
1 /r

PD,0
L
)𝜑=p ,N =0 [1]

cHK
1,ℨ0

1
: M gp

ℨ0
1

→ (Ru∗Oℨ0
1 /r

HK,0
L
)𝜑=p ,N =0 [1] .

Proof. The compatibility (4.1.2) affirms that the diagram

M gp
ℨ1

Ru∗Oℨ1/Zp [1]

M gp
ℨ1

Ru∗Oℨ1/Otriv
FL
[1]

M gp

ℨ0
1

Ru∗Oℨ0
1 /O

triv
FL
[1]

M gp

ℨ0
1

Ru∗Oℨ0
1 /r

PD,0
L
[1]

M gp
ℨ1

Ru∗Oℨ0
1 /O

0
FL
[1]

c cris1,ℨ1

≃
c cris1,ℨ1

c cris
1,ℨ01

cPD
1,ℨ01

cHK
1,ℨ01

commutes. The fourth right vertical map is N -equivariant. Moreover, by [36, Lemma 4.2], the third right

vertical map factors through Ru∗Oℨ1/Otriv
FL

≃→ (Ru∗Oℨ1/r PD,0L
)N =0. Hence cPD

1,ℨ0
1
and cHK

1,ℨ0
1
factor respectively

through

cPD
1,ℨ0

1
: M gp

ℨ0
1

→ (Ru∗Oℨ0
1 /r

PD,0
L
)N =0 [1]

cHK
1,ℨ0

1
: M gp

ℨ0
1

→ (Ru∗Oℨ0
1 /r

HK,0
L
)N =0 [1] .

Then (4.1.4) helps conclude. □

4.1.7. De Rham construction. Next, let us recall the construction of the rigid-analytic de Rham first Chern

class map

(4.1.7.1) cdR1 : O×Z → Fil1Ω•Z/K [1]

of éh-sheaves over Z for an rigid-analytic variety Z over K , and that of the infinitesimal B+dR first Chern class
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map

(4.1.7.2) c inf1 : O×X → RuX /B+dR∗Oinf,X /B+dR [1]

of éh-sheaves over X for an rigid-analytic variety X over C . Here, uX /B+dR∗ denotes the canonical morphism of

sites from (X /B+dR)inf to Xéh.

Assume first that everything is smooth. In the geometric case, one can proceeds as in the crystalline case

using embedding systems, so as to reduce to the case where there exists X ↩→ P with latter smooth over B+dR.

In this case, letting D be the envelope of X in P [31, Definition 2.2.1, and §4.1], our map is then constructed as

(4.1.7.3) O×X
≃← (1 + Jinf,D → O×inf,D )

(log,dlog)
→ (Oinf,D → Oinf,D ⊗Oinf,P Ω1

P /B+dR
→ · · · ) = Oinf,D ⊗Oinf,P Ω•P /B+dR

[1] .

in D (Xét,Z), where the last complex is identified with RΓinf (X /B+dR) [31, Theorem 4.1.1]. The logarithm is

well-defined. Indeed, by definition, if we let I be defining ideal of X in P , which is a coherent ideal, then

D := lim−−→n∈N
hPn where Pn is the n-th infinitesimal neighbourhood of X in P , defined by the ideal I n+1; and

OD := lim←−−n∈N OPn , Jinf,D := ker(OD → OX ) = lim←−−n∈N ker(Pn → OX ). The logarithm is well-defined on

1 + I n+1 → OPn by I -nilpotency and since we are over Qp ; then it suffices to pass to the limit.

For the arithmetic case, one could do the same using the infinitesimal site (Z/K )inf which calculates de

Rham cohomology [31, Theorem 1.2.1 (iii)], but it would be far more elementary if we define cdR1 directly as the

map of genuine complexes

O×Z
dlog
→ (Ω1

Z/K → Ω2
Z/L → · · · ) = Fil1Ω•Z/K [1] .

In general for singular X , éh-descent suffices to conclude.

Using infinitesimal interpretation, we see that cdR1 and c inf1 are compatible.

4.1.8 - Lemma. The map cdR1 factors through

c inf1 : O×X → Fil1HdgΩ
•
X /B+dR

.

Proof. In the case where there exists X ↩→ P with latter smooth over B+dR and D is the envelope of X in P , it

is easily from the expression that the second map in (4.1.7.3) factors through ( Jinf,D → Oinf,D ⊗Oinf,P Ω1
P /B+dR

→
· · · ) = Fil1 (Oinf,D ⊗Oinf,P Ω•P /B+dR

) [1]. In general, it follows from simplicial construction then éh-descent. □

4.1.9. Syntomic construction. For ℨ ∈Mss
K , we want to define its syntomic first Chern class map

(4.1.9.1) c syn1,ℨ : M gp
ℨ → RΓsyn (ℨ𝜂 , 1) [1]

in D ((ℨ𝜂)ét,Z).

By (2.3.3), we may use the natural identification RΓsyn (ℨ𝜂 , 1) ≃ [RΓcris (ℨ)𝜑=pQp
→ RΓdR (ℨ𝜂/K )/Fil1].

Consider the following diagram

(4.1.9.2)

Γ(ℨ,M gp
ℨ ) RΓcris (ℨ)𝜑=pQp

[1] RΓcris (ℨ/O×L )Qp [1]

Γ(ℨ𝜂 ,O×ℨ𝜂
) Fil1RΓdR (ℨ𝜂/K ) [1] RΓdR (ℨ𝜂/K ) [1]

≃

c cris1

c crdR1 ≃
cdR1

where the left vertical isomorphism results from M gp
ℨ ≃ j∗O×ℨ𝜂

, and the right vertical isomorphism will be

recalled below. Now, for commutativity, the maps c cris1 and c crdR1 are naturally compatible by (4.1.2), and

we will now show that c crdR1 and cdR1 are compatible by similarity between constructions of crystalline and

infinitesimal cohomologies. Let 𝛼 : (ℨ𝜂/L)inf → (ℨ/O×L )cris be the morphism of sites defined via the generic
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fibre functor sending (𝔘 ↩→ 𝔗) over O×L to 𝔘𝜂 ↩→ 𝔗𝜂 over L. Then 𝛼 induces a morphism RΓcris (ℨ/O×L )
≃→

R𝛼∗RΓinf (ℨ𝜂/L). Since ℨ is semistable, ℨ is log-smooth over O×L and ℨ𝜂 is smooth over L, hence in our

definition of first Chern class maps, one can choose ℨ → 𝔓 and ℨ𝜂 ↩→ P to be identities. This gives the

following commutative diagram

M gp
ℨ (1→ M gp

ℨ ) (Oℨ → 𝜔1
ℨ/O×L

→ · · · ) 𝜔•
ℨ/O×L

[1]

𝛼∗O×ℨ𝜂
(1→ 𝛼∗O×inf,ℨ𝜂

) (𝛼∗Oinf,ℨ𝜂 → 𝛼∗Ω1
ℨ𝜂/L → · · · ) R𝛼∗Ω•ℨ𝜂/L [1]

≃

≃

≃

(log,dlog)

≃ ≃ after (−)Qp

≃ (log,dlog) ≃

which calculates the diagram at the beginning of the proof involving c crdR1 and cdR1 ; for the right vertical

isomorphism, we notice that RΓ(ℨ,𝜔•
ℨ/O ×L
)Qp

≃→ RΓ(ℨ𝜂 ,Ω•ℨ𝜂/K ) for affine ℨ semistable over OL ).

By commutativity of (4.1.9.2), the morphism crystalline Chern class map c cris1 factors through the fibre

[RΓcris (ℨ)𝜑=pQp
→ RΓdR (ℨ𝜂/K )/Fil1] = RΓsyn (ℨ𝜂 , 1), thus defining (4.1.9.3).

Finally, for Z ∈ RigK , by éh-descent, one defines its syntomic first Chern class map

(4.1.9.3) c syn1 : O×Z → RΓsyn (Z, 1) [1]

in D (Zéh,Z). Taking first cohomology, we obtain (by abuse of notation) a morphism

(4.1.9.4) c syn1 : Pic(Z ) ≃ H 1
ét (Z,O×Z ) → H 2

syn (Z, 1).

In other words, we may associate with any line bundle L on Zét a class c syn1 (L) ∈ H
2
syn (Z, 1).

4.1.10 - Remark. We could also have defined syntomic first Chern class using cHK1 and cdR1 if we have proven

the compatibility between them, however, it seems that this might exist locally and there depend on the choice

of a uniformizer of varying base fields L. The construction is as follows.

4.1.11 - Proposition. Let ℨ ∈ Mss
K with splitting field L, and choose a uniformizer 𝜛 ∈ L. Then the following

diagram commutes

RΓ(ℨ,M gp
ℨ ) RΓ(ℨ0

1 ,M
gp

ℨ0
1

) RΓcris (ℨ0
1 /O

0
FL
)Qp [1]

RΓ(ℨ𝜂 ,O×ℨ𝜂
) Fil1RΓdR (ℨ𝜂/K ) RΓdR (ℨ𝜂/K ) [1]

cHK1

𝜄arithHK

cdR1

whose homotopy depends on the class l𝜛 = [𝜛] in 𝔪L/p𝔪L and commutes with N . Moreover, the syntomic first

Chern class map defined by this is equivalent via certain homotopy depending on 𝜋 to that of (4.1.9.3).

Lacking independency nor naturality on L of this homotopy, we are not sure how to deal with its global-

isation. But the lemma remains useful, because in applications, we will often reduce the statement to certain

local statement by other naturality results, where we then use this lemma to check isomorphisms.

Proof. The last statement follows from the commutativity, the equivalence (2.3.4), the compatibility between

cHK1 and c cris1 (4.1.2), and that between c cris1 and cdR1 (4.1.9.2). We only need to treat the commutativity diagram.

We may assume ℨ to be qcqs by Zariski descent; then RΓdR (ℨ𝜂/K ) is represented by a bounded complex

of K -Banach spaces, so that (1.3.11, ii) applies. Let 𝔛 = ℨ ⊗OL OC ∈ Mss,b
C . By definition of Hyodo-Kato
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morphisms (2.1.4) and compatibility between cdR1 and c inf1 (4.1.7), it suffices to prove that the following diagram

RΓ(ℨ,M gp
ℨ ) RΓ(ℨ0

1 ,M
gp

ℨ0
1

) RΓcris (ℨ0
1 /O

0
FL
)Qp [1]

RΓ(𝔛𝜂 ,O×𝔛𝜂
) RΓinf (𝔛𝜂/B+dR) [1]

cHK1

𝜄
geom
HK

c inf1

commutes GK -equivariantly. The choice of uniformizer 𝜛 ∈ OL determines a morphism r PDL → Âl𝜛 ,st, whence

identifying 𝜄
geom
HK through a homotopy 𝛼𝜋 with

RΓcris (ℨ0
1 /O

0
FL
)Qp

𝜄0,l→ RΓcris (ℨ1/r PDL )
N −nilp
Qp

→ RΓcris (𝔛1/Âl𝜛 ,st)
N −nilp
Qp

≃← RΓcris (𝔛/A×cris)Qp ⊗■B+cris B
+
st

→ RΓinf (𝔛𝜂/B+dR).

Here, 𝜄0,l is the Hyodo-Kato section, which is (𝜑,N )-equivariant [19, Theorem 2.12, Proposition 2.14].

Hence cPD1 is compatible with c st1,l𝜛 by naturality (4.1.2). On the other hand, still by naturality, c st1,l𝜛 is

compatible with cAcris
1 , which is in turn compatible with c inf1 by similarity between crystalline and infinitesimal

cohomologies via the morphism of sites (𝔛𝜂/B+dR,m)inf → (𝔛/A
×
cris)cris defined by the functor sending a pair

(𝔘 ↩→ 𝔗 = SpfP ) over A×cris to (𝔘𝜂 ↩→ 𝔗B+dR,m := 𝔗𝜂 ×SpaB+cris SpaB
+
dR,m = Spa(B ⊗̂AcrisB

+
dR,m)) over B

+
dR,m .

It remains to show that there is a homotopy 𝜄0,l ◦ cHK1 ≃ cPD1 commuting with N . It is enough to show

that their difference 𝛿 := 𝜄0,l ◦ cHK1 − cPD1 is homotopic to zero. By compatibility of cPD1 and cHK1 via the natural

map p0 : r PDL → O0
FL
, and by the (𝜑,N )-equivariance of the isomorphism RΓcris (ℨ0

1 /O
0
FL
)Qp ⊗■FL r

PD
L [

1
p ]

≃→
RΓcris (ℨ1/r PDL )Qp , the difference 𝛿 factors 𝜑-equivariantly through

𝛿′ : RΓ(ℨ0
1 ,M

gp

ℨ0
1

) → RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗■FL I1 [1]

where I1 = ker(r PDL → OFL ) [ 1p ], which is a FL-Banach space. Now, we need to show that the map (by abuse of

notation) on cohomology groups

(4.1.11.1) 𝛿′ : H i
ét (ℨ0

1 ,M
gp

ℨ0
1

) → H i+1
cris (ℨ0

1 /O
0
FL
)Qp ⊗■FL I1

is equal to zero.

For this, we need more notation. For n ∈ N, denote

(4.1.11.2) In :=

{ +∞∑
i=n

ai
t ia
⌊ ie ⌋!

�� ai ∈ FL , lim
i→+∞

ai = 0

}
⊂ r PDL [

1
p
] .

This is a F -linear closed (whence Banach) subspace (even an ideal) with finite-dimensional complement⊕n−1
i=0 FL

t ia
⌊ ie ⌋!

, and does not depend on the choice of a ∈ (𝔪L/𝔪2
L)\{0}. The n-th power of frobenius 𝜑n

on r PDL when restricted to I1 factors through In , i.e. 𝜑n (I1) ⊂ In .

Now we treat the vanishing of (4.1.11.1). Knowing that 𝜑(cHK1 ) = pcHK1 and 𝜑(cPD1 ) = pcPD1 , we have

𝜑(𝛿′) = p𝛿′. By 𝜑-equivariance of 𝛿′ and invertibility of 𝜑 = p on RΓét (ℨ0
1 ,M

gp

ℨ0
1

)Qp , we have 𝛿′ = 1
pn 𝜑

n𝛿′

factoring as

𝛿′ : H i
ét (ℨ0

1 ,M
gp

ℨ0
1

) → H i+1
cris (ℨ0

1 /O
0
FL
)Qp ⊗■FL In → H i+1

cris (ℨ0
1 /O

0
FL
)Qp ⊗■FL I1.

Hence 𝛿′ factors through

𝛿′′ : H i
ét (ℨ0

1 ,M
gp

ℨ0
1

) → lim←−−
n

(H i+1
cris (ℨ0

1 /O
0
FL
)Qp ⊗■FL t

pn−1
a r PDL [

1
p
])

where the transition maps are induced by inclusions of ideals In = t p
n−1
a r PDL ⊂ r PDL . Since ℨ is affine,
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RΓcris (ℨ0
1 /O

0
FL
)Qp is represented by a bounded complex of FL-Banach spaces (2.1.8). Hence H i+1

cris (ℨ0
1 /O

0
FL
)Qp

is the cokernel of a morphism between FL-Banach spaces. The lemma (1.2.9.1) allows us to conclude. □

4.1.12 - Remark. We could also have resorted to the derived limit approach, knowing that RΓHK (ℨ0
1 /O

0
FL
)Qp

is a bounded complex of FL-Banach spaces, for which tensor product commutes with countable products on

each factor. Apparently however, this will not work, because R lim←−−n t
pn−1
a r PDL [

1
p ] ≃ R1 lim←−−n t

pn−1
a r PDL [

1
p ] [−1]

which does not vanish by easy computation, e.g. F ⟨T ⟩ → ∏
N F is not surjective. However, the last map is

injective, which was our principal motivation of vanishing results in (1.2.9.2).

4.1.13. Étale construction. For Z either schemes or analytic adic spaces (so that O×Z is an étale sheaf [34,

2.2.6]) over K (which is a nonarchimedean field of characteristic 0), there is a short exact sequence of étale

sheaves named Kummer sequence on Zét

0→ 𝜇pn → O×Z → O×Z → 0

for any n ∈ N, from which we obtain a mod pn étale Chern class map O×Z → 𝜇pn [1] in D (Zét,Z/pn) ↩→
D (Zét,Zp ), whence an étale Chern class map

c ét1 : O×Z → Zp (1) [1] .

The algebraic and analytic étale Chern class maps are compatible through the analytification functor.

4.2 Projective bundle formula and A1-homotopy invariance

4.2.1. The (relative) cup product is defined in general for morphisms of ringed spaces [52, Remark 0B68]. In

many cases, it can be quite explicit and such formula could be useful for proving compatibilities.

The relative cup product is compatible with respect to commutative squares, namely, for any commutative

diagram of ringed spaces

X ′ X

Y ′ Y

f ′

g ′

f

g

and F,G ∈ ModOX , the following diagram commutes naturally

g ∗ (Rf∗F ⊗L Rf∗G ) g ∗Rf∗ (F ⊗G )

(Rf ′∗ g ′∗F ) ⊗L (Rf ′∗ g ′∗G ) Rf ′∗ (g ′∗F ⊗L g ′∗G ).

g ∗ (−∪−)

−∪−

This follows formally from loc. cit.. Indeed, the vertical maps are induced by g ∗Rf∗ → Rf ′∗ g
′∗, adjoint to

f ′∗g ∗Rf∗ ≃ g ′∗ f ∗Rf∗ → g ′∗ the g ′∗ ◦ counit. The adjoint diagram (associated to f ′∗ ⊣ Rf ′∗ ) of the above is

then

g ′∗ f ∗ (Rf∗F ⊗L Rf∗G ) g ′∗ f ∗Rf∗ (F ⊗G )

f ′∗ (Rf ′∗ g ′∗F ) ⊗L f ′∗ (Rf ′∗ g ′∗G ) g ′∗F ⊗L g ′∗G .

unit◦g ′∗◦counit

g ′∗ f ∗ (−∪−)

g ′∗◦counit
counit◦g ′∗

The lower left two morphisms composed to a diagonal morphism g ′∗ ◦ counit, hence its natural commutativity
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is reduced to the commutativity of the upper triangle, and a fortiori that of the triangle

f ∗ (Rf∗F ⊗L Rf∗G ) f ∗Rf∗ (F ⊗L G )

F ⊗L G .

counit

f ∗ (−∪−)

counit

But the diagonal morphism here is by definition adjoint to the cup product − ∪ −, whence the commutativity.

4.2.2. Product structure on log-crystalline cohomology. Let Z be an integral and quasi-coherent log-

scheme over a quasi-coherent log pd-scheme S ♯, as in the setting of (4.1.1. The product structure on log-

crystalline cohomology RΓcris (Z /S ♯) is described as induced from the product structure of OD ⊗OP 𝜔•
P /S ♯

when Z ↩→ P is a log pd-S ♯-smooth thickening with log pd-envelope Z ↩→ D , then by étale hyperdescent

in general cases. It satisfies higher associativity relations. The product structure thus defined is natural with

respect to morphism of log-crystalline sites, and is compatible with Frobenius action in the characteristic p

setting (4.1.3).

4.2.3 - Example. Let us continue the example (4.1.5): let ℨ ∈Mss
K with splitting field L; let l be a OFL -class

in (𝔪L/p𝔪L)\{0}. The natural morphisms

RΓcris (ℨ) → RΓcris (ℨ1/r PDL )l → RΓcris (ℨ0
1 /r

PD,0
L ) → RΓcris (ℨ0

1 /O
0
FL
)

are compatible with 𝜑-equivariant product structures.

4.2.4 - Lemma. Consider a OFL -class l ∈ (𝔪L/p𝔪L)\{0} associated with i ∗l : r PDL ↠ O×L,1 lifting r
PD
L ↠ O0

FL ,1

along O×L,1 ↠ O0
FL ,1
. Then the Hyodo-Kato section 𝜄0,l : RΓcris (ℨ0

1 /O
0
FL
)Qp → RΓcris (ℨ1/r PDL )l ,Qp is compatible with

product structures.

Proof. The same strategy of the last part of the proof of (4.1.11) applies: one looks at the difference of two

maps 𝛿, which factors through RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗■FL I1 [1]. By 𝜑-equivariance of 𝛿′ and invertibility of 𝜑 on

RΓcris (ℨ0
1 /O

0
FL
)Qp , we have 𝛿′ = 𝜑n𝛿′𝜑−n factoring as

𝛿′ : RΓcris (ℨ0
1 /O

0
FL
)Qp ⊗L■FL RΓcris (ℨ

0
1 /O

0
FL
)Qp → RΓcris (ℨ0

1 /O
0
FL
)Qp ⊗■FL In [1] → RΓcris (ℨ0

1 /O
0
FL
)Qp ⊗■FL I1 [1] .

Then we apply (1.2.9.1) to conclude. □

4.2.5 - Example. Let us continue the example (4.2.3), focusing now on the monodromy operators. We claim

that for M ∈ {RΓcris (ℨ1/r PDL )l ,Qp ,RΓcris (ℨ0
1 /r

PD,0
L )Qp ,RΓcris (ℨ0

1 /O
0
FL
)Qp }, the product structure is compatible

with the monodromy operator in the sense that the following diagram commutes

M ⊗L■FL M M

M ⊗L■FL M M

N ⊗idM +idM ⊗N N

and satisfies higher associativity relations. Indeed, in these cases, the monodromy operators are induced (in a

canonical way20) from the Lie algebra action of G♮
m-action on such M (cf. [19, Paragraphs around (2.15)]), and

the concerned product structures are all G♮
m-equivariant. The equivariance of the Lie algebra action is then

illustrated exactly by the diagram above.

4.2.6 - Lemma. Let (A, 𝜙), (B ,𝜓) and (C , 𝜒) be three objects with endormorphism in a ⊗-stable ∞-category
(hence have fibre sequences and additive structure on Hom’s), together with a pairing 𝜇 : A ⊗ B → C such that

20We took the rational coefficients to make the monodromy action canonical, i.e. N = 1
eL
t𝜕t [19, The paragraph after (2.15)].
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𝜓A ⊗ 𝜒B + 𝜒A ⊗ 𝜓B is compatible with 𝜓C , where 𝜒A ∈ End(A) and 𝜒B ∈ End(B). Then 𝜇 induces a unique

pairing fib(𝜓A) ⊗ fib(𝜓B ) → fib(𝜒).

Proof. This is formal, and can be read off from the following commutative diagram

fib(𝜓A) ⊗ fib(𝜓B ) fib(𝜓C )

A ⊗ B C

A ⊗ B C

𝜓A⊗𝜒B+𝜒A⊗𝜓B

𝜇

𝜓C

𝜇

whose left column composes naturally to zero. □

4.2.7 - Example. The natural morphisms

RΓcris (ℨ)Qp → RΓcris (ℨ1/r PDL )N =0
l ,Qp
→ RΓcris (ℨ0

1 /r
PD,0
L )N =0

Qp
→ RΓcris (ℨ0

1 /O
0
FL
)N =0
Qp

are compatible with 𝜑-equivariant product structures, where the last three objects are endowed with the canon-

ical product structure by (4.2.6).

4.2.8 - Example. We want to study product structures on Frobenius fixed points (−)𝜑=pr for r ∈ Z. Intuitively
speaking, the product of a 𝜑 = pr eigenvector and a 𝜑 = ps eigenvector should be a 𝜑 = pr+s eigenvector, so

we should expect a product structure on Frobenius fixed points of the form

A𝜑=pr ⊗ B𝜑=ps → C 𝜑=pr+s .

We claim that it is indeed the case. For this, in order to apply (4.2.6), consider 𝜓A = 𝜑A − pr , 𝜒B = ps ,

𝜒A = pr 𝜑A and 𝜓B = 𝜑B − ps . Then 𝜓A ⊗ 𝜒B + 𝜒A ⊗ 𝜓B = 𝜑A ⊗ 𝜑B − pr+s is compatible with 𝜑C − pr+s .
It is direct but probably tedious to check that the product structure thus defined satisfies higher associativity

relations.

As a result, the natural morphisms

RΓcris (ℨ)𝜑=p
r

Qp
→ RΓcris (ℨ1/r PDL )

𝜑=pr ,N =0
l ,Qp

→ RΓcris (ℨ0
1 /r

PD,0
L )𝜑=p

r ,N =0
Qp

→ RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

for r ∈ Z are compatible with product structures.

4.2.9. Product structure on de Rham cohomology. For Z ∈ RigK , we have a product structure

FilrRΓdR (Z/K ) ⊗L■K FilsRΓdR (Z/K ) → Filr+sRΓdR (Z/K )

for r ,s ∈ Z induced from the one on the level of complexes of sheaves. For X ∈ RigC , similarly (combining

the the log-crystalline setup (4.2.2) and the de Rham setup above), we obtain a product structure

FilrRΓinf (X /B+dR) ⊗
L■
K FilsRΓinf (X /B+dR) → Filr+sRΓinf (X /B+dR)

for r ,s ∈ Z. They all satisfy higher associativity relations.

For ℨ ∈Mss
K with splitting field L and 𝔛 ∈Mss

C , the natural "base change" morphisms RΓcris (ℨ/O×L ) →
RΓcris (ℨ𝜂/K ) and RΓcris (𝔛/A×cris) → RΓinf (𝔛𝜂/B+dR) are compatible with product structures, again by similar-

ity between crystalline and infinitesimal constructions.

To induce the product structure on syntomic cohomologies from the above, one needs the following

lemma.
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4.2.10 - Lemma. The Hyodo-Kato section 𝜄0 : RΓcris (ℨ0
1 /O

0
FL
)Qp → RΓcris (ℨ0

1 /r
PD,0
L )Qp is compatible with product

structures.

Proof. The same proof as (4.2.4) (or by composing 𝜄0,l with the natural base change map RΓcris (ℨ1/r PDL )l ,Qp →
RΓcris (ℨ0

1 /r
PD,0
L )Qp ). □

4.2.11. Product structure on syntomic cohomology. Let Z ∈ RigK and r ,r ′ ∈ N, there is a natural product

structure [55, §2.2]

(4.2.11.1) RΓsyn (Z,r ) ⊗L■Qp
RΓsyn (Z ,r ′) → RΓsyn (Z ,r + r ′)

given by the formula (x ,y)⊗ (x ′,y ′) ↦→ (xx ′, (−1)qxy ′+y𝜑r ′ (x ′)), but we explain it now using previous construc-

tions. For this, taking the Bloch-Kato point of view, we need to show that 𝜄arithHK : RΓcris (ℨ0
1 /O

0
FL
)𝜑=p

r ,N =0
Qp

→
RΓdR (Z/K )/Filr is compatible with product structures hence induces a canonical product structure on its

fibre RΓBK
syn (Z,r ). Again, we may work locally and assume that Z = ℨ𝜂 with ℨ ∈ Mss

K with splitting field L.

Going through the construction of (2.1.4), using (4.2.3), (4.2.7), (4.2.8) and (4.2.9), we only need to prove that the

Hyodo-Kato section 𝜄0 : RΓcris (ℨ0
1 /O

0
FL
)Qp → RΓcris (ℨ0

1 /r
PD,0
L )Qp is compatible with product structures; but

this has just been done in (4.2.10).

Moreoever, the maps of the diagrams in the proof of (2.3.3) are compatible with product structures

again by (4.2.3), (4.2.7), (4.2.8), (4.2.9) and (4.2.10), whence it is the same product structure as defined by

RΓFM
syn (ℨ,r ) = [RΓcris (ℨ)

𝜑=pr

Qp
→ RΓcris (ℨ)Qp /Filr ].

4.2.12 - Lemma. For Z ∈ RigK , the natural syntomic-proétale period map 𝜌arithsyn is compatible with the product

structure on syntomic cohomology.

Proof. In light of the construction of the syntomic-proétale period map (3.1.3) by taking Galois invariants of

the diagram (3.1.3.1), it suffices to show that each morphism in this last diagram is compatible with product

structures, and that the maps RΓsyn (Z,r ) → RΓsyn (ZC ,r ) is compatible with product structures. The second

compatibility is clear by construction. The first compatibility follows from the (𝜑,N )-equivariance of the

comparison map RΓHK (X ) ⊗■F̆ Blog [ 1t ] → RΓproét (X ,Blog [ 1t ]) as can be deduced from (3.1.2.4). □

4.2.13. Products with first Chern classes. Let E be an (analytic/étale) vector bundle of rank d + 1, d ≥ 0, on

Z . Let 𝜋 : PZ (E) → Z be its associated projective bundle and O(1) be its canonical bundle. The syntomic

first Chern class (4.1.9.4) defines maps

c syn1 (O(1))
i ∪ 𝜋∗ : RΓsyn (Z,r − i )

𝜋∗→ RΓsyn (PZ (E),r − i )
c syn1 (O (1) )

i∪−
→ RΓsyn (PZ (E),r ) [2i ]

for 0 ≤ i ≤ r . Indeed, (4.2.11.1) induces a map

RΓsyn (Z, 1) → R Hom(RΓsyn (Z ,r − 1),RΓsyn (Z,r ))

hence taking H 2, one gets

H 2
syn (Z, 1) → Hom(RΓsyn (Z,r − 1),RΓsyn (Z,r ) [2]).

The image of a class c is the cup product denoted by c ∪ −. By itertation on i , one obtains∏
i

H 2
syn (Z, 1) → Hom(RΓsyn (Z,r − i ),RΓsyn (Z,r ) [2i ])

for 0 ≤ i ≤ r . The image of the constant tuple c syn1 (O(1))
[[1,i ]] is denoted by c syn1 (O(1))

i∪.
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Similarly, for Z a scheme or analytic adic space over K , the étale first Chern class (4.1.13) defines maps

c ét1 (O(1))
i ∪ 𝜋∗ : RΓét (Z , 𝜇⊗(r−i )pn ) → RΓét (PZ (E), 𝜇⊗rpn ) [2i ]

whence maps

c ét1 (O(1))
i ∪ 𝜋∗ : RΓét (Z,Zp (r − i )) → RΓét (PZ (E),Zp (r )) [2i ] .

These commute with the analytification functor since so do c ét1 and − ∪ − by (4.2.1).

4.2.14 - Lemma. Let ℨ ∈ Mss
K with splitting field L, and choose a uniformizer 𝜛 ∈ L. Then the product

structures on RΓcris (ℨ0
1 /O

0
FL
) and RΓdR (ℨ𝜂/K ) are compatible across the arithmetic Hyodo-Kato morphism 𝜄arithHK ,

whose homotopy depends on the class l𝜛 = [𝜛] in 𝔪L/p𝔪L .

Proof. The same strategy as in the proof of (4.1.11), whose most essential part is dealt with in (4.2.4). □

4.2.15 - Proposition (Projective bundle formula). For r ≥ d , there is a natural isomorphism
d⊕
i=0

(c syn1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

RΓsyn (Z,r − i ) [−2i ]
≃→ RΓsyn (PZ (E),r ).

Proof. By admissible descent, we may assume that E = O⊕(d+1)Z , then PZ (E) = PdZ . By éh-descent, one may

assume that Z = ℨ𝜂 where ℨ ∈ Mss
K is affine with splitting field L, which we may furthermore assume to be

algebraizable to an affine scheme Z flat and 𝜂-smooth over OL whose p-adic formal completion is ℨ (by [25,

Theorem 7], cf. [53, Corollary 3.3.2]). By compatiblity of first Chern class maps (4.1.11) and product structures

(4.2.14), we are reduced to showing that

d⊕
i=0

(cHK1 (O(1))i ∪ 𝜋∗) :
d⊕
i=0

RΓHK (Z ) [−2i ]
≃→ RΓHK (PdZ )(ProjHK)

d⊕
i=0

(cdR1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

Filr−iRΓdR (Z/K ) [−2i ]
≃→ FilrRΓdR (PdZ /K )(ProjdR,r )

are isomorphisms. Since Z has a semistable model ℨ, (ProjHK) reduces to (ProjdR,r ) with r = 0 by the Hyodo-

Kato isomorphism (2.1.9). So it suffices to prove (ProjdR,r ). Recall that the algebraic analogue of it holds for Z𝜂 ,

cf. [46, Proof of Proposition 5.2]; indeed, the statement, being analytically local, is refined to a sheaf theoretic

isomorphism

(ProjalgdR,r )
d⊕
i=0

(cdR1 (O(1))
i ∪ 𝜋alg∗) :

d⊕
i=0

Ω•≥r−i
Z𝜂/K [−2i ]

≃→ R𝜋alg∗ Ω•≥r
PdZ𝜂
/K ,

which can be easily checked on stalks [52, Proposition 0FMR, Proposition 0FMT]. By relative GAGA [21,

Example 3.2.6, Appendix (A.1.1)] [40, §p. 43-53] and compatibility between algebraic and rigid-analytic de

Rham first Chern class maps, one obtains

(Proj′dR,r )
d⊕
i=0

(cdR1 (O(1))
i ∪ 𝜋alg∗) :

d⊕
i=0

Ω•≥r−i(Z𝜂 )an/K [−2i ]
≃→ R𝜋∗Ω•≥rPd(Z𝜂 )an/K

.

Since Z = ℨ𝜂 = Z
rig
𝜂 is an affinoid open subspace of (Z𝜂)an, one obtains (ProjdR,r ) by taking RΓ(Z ,−) of this

isomorphism. □

4.2.16 - Proposition (A1-homotopy invariance). Let 𝜋 : A1
Z → Z be the relative analytic affine line over Z . Then

for any r ∈ N, the pullback induces a natural isomorphism

𝜋∗ : RΓsyn (Z,r ) → RΓsyn (A1
Z ,r ).
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Proof. We are reduced to showing the A1-homotopy invariance of RΓHK (−,r ) and Fil•RΓdR (−/K ) respectively
for Z ∈ RigK and r ∈ N. By éh-descent, one may assume that Z = ℨ𝜂 where ℨ ∈Mss

K is affine with splitting

field L, which we may furthermore assume to be algebraizable to an affine scheme Z flat, of finite type and

𝜂-smooth over OL whose p-adic formal completion is ℨ, as precedingly. The Hyodo-Kato statement reduces

to the Fil0 de Rham statement by the Hyodo-Kato isomorphism (2.1.9). One can check the latter directly, or by

Gysin sequence using the previous proposition.

Let us explain the second approach. Let 𝜋 : P1
Z → Z be the relative projective line, j : A1

Z → P1
Z and

i∞ : Z ↩→ P1
Z be the usual excision couple. For any coherent sheaves F on A1

Z , the higher direct images

Ri j∗F = 0 for i ≥ 1; indeed, H i (U ∩ A1
Z ,F) vanishes for affinoid open U ⊂ P1

Z , since U ∩ A1
Z is then

quasi-Stein and Kiehl’s Cartan’s Theorem B [39, Satz 2.4] (cf. [45, Remark 1.4]). As a result, R j∗Ω•≥rA1
Z /K

is

represented by the genuine complex j∗Ω•≥rA1
Z /K

. There is an exact sequence of complexes of étale sheaves

0→ Ω•≥r
P1
Z /K
→ j∗Ω•≥rA1

Z /K
Res→ i∞∗Ω•≥r−1Z/K → 0

where Res is taking the residue along this closed subspace. The de Rham first Chern class of the tautological

bundle is cdR1 (O(1)) = [dlog t ], whose representative differential form dlog t induces by wedge product the

connecting morphism in derived category. So 𝛿 : i∞∗Ω•≥r−1Z/K [−1] → Ω•≥r
P1
Z /K

is identified with cdR1 (O(1)) ∪ 𝜋∗.

Now we obtain the following commutative diagram

Ω•≥r−1Z/K [−1] Ω•≥r−1Z/K [−1] ⊕ Ω•≥rZ/K Ω•≥rZ/K

R𝜋∗i∞∗Ω•≥r−1Z/K [−1] R𝜋∗Ω•≥rP1
Z /K

R𝜋∗ j∗Ω•≥rA1
Z /K

≃ (cdR1 (O (1) )∪𝜋
∗ )⊕𝜋∗≃ 𝜋∗

R𝜋 (𝛿)

where rows are exact triangles, the first two vertical arrows are isomorphisms since 𝜋i∞ = idZ and (Proj′dR,r ),

whence so is the third. □

4.2.17 - Proposition (Projective bundle formula for (pro)étale cohomology). For r ≥ d , there is a natural

isomorphism d⊕
i=0

(c ét1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

RΓét (Z,Zp (r − i )) [−2i ]
≃→ RΓét (PZ (E),Zp (r )).

In particular, there are natural isomorphisms

d⊕
i=0

(c ét1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

RΓét (Z,Qp (r − i )) [−2i ]
≃→ RΓét (PZ (E),Qp (r ))

d⊕
i=0

(c ét1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

RΓproét (Z,Qp (r − i )) [−2i ]
≃→ RΓproét (PZ (E),Qp (r )).

Proof. The second isomorphism is the first with p inverted. The third one reduces to the case where Z is affine

by analytic descent, which agrees with the second by quasi-compactness of Z .

For the first isomorphism, it suffices to prove that

(4.2.17.1)
d⊕
i=0

(c ét1 (O(1))
i ∪ 𝜋∗) :

d⊕
i=0

𝜇⊗(r−i )pn [−2i ] ≃→ R𝜋∗𝜇⊗rpn .

As these are discrete sheaves, once proven, it can be upgraded to an isomorphism in D (Zét,CondAb).

The question being éh-local, we may assume that Z = ℨ𝜂 where ℨ is a p-adic formal scheme algebraizable

to an affine scheme Z flat, of finite type and 𝜂-smooth over OL for some finite extension L/K (cf. beginning

of the proof of (4.2.15)). There is a projective bundle formula for mod pn étale cohomology of schemes over K
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(cf. [57, Theorem 6.1.7]), so there is a natural isomorphism

d⊕
i=0

(c ét1 (O(1))
i ∪ 𝜋alg∗) :

d⊕
i=0

𝜇⊗(r−i )pn [−2i ] ≃→ R𝜋∗𝜇⊗rpn

in D ((Z𝜂)ét,Z/pn). By Huber’s comparison [34, Theorem 3.8.1] and its compatibility between products with

first Chern classes (4.2.13), this implies the desired (4.2.17.1). □

4.2.18 - Proposition (A1-homotopy invariance of integral étale cohomology). Let 𝜋 : A1
Z → Z be the relative

analytic affine line over Z . Then for any r ∈ N, the pullback induces a natural isomorphism

𝜋∗ : RΓét (Z ,Zp (r ))
≃→ RΓét (A1

Z ,Zp (r )).

In particular, the pullback induces a natural isomorphism

𝜋∗ : RΓét (Z,Qp (r ))
≃→ RΓét (A1

Z ,Qp (r )).

Proof. The second isomorphism reduces to the first, since by definition RΓét (Z,Qp (r )) := RΓét (Z,Zp (r ))Qp .

To prove the first, we may assume by éh-descent that Z = ℨ𝜂 where ℨ is a p-adic formal scheme

algebraizable to an affine scheme Z flat, of finite type and 𝜂-smooth over OL for some finite extension L/K
(cf. beginning of the proof of (4.2.15)). By Huber’s comparison theorem [34, Theorem 3.8.1], we have the natural

base change isomorphism of étale sheaves

𝜑∗Z𝜂
R𝜋alg∗ 𝜇⊗rpn

≃→ R𝜋∗𝜇⊗rpn ,

where 𝜑Z𝜂 : (Z𝜂)anét → (Z𝜂)ét is the natural morphism of sites defined by the analytification functor. But we

have F
≃→ R𝜋alg∗ 𝜋alg

∗
F by the A1-homotopy invariance of torsion sheaves F on (Z𝜂)ét (since its base field L is

of characteristic 0)21. Therefore, we obtain isomorphisms of étale sheaves

𝜇⊗rpn = 𝜑∗Z𝜂
𝜇⊗rpn

≃→ 𝜑∗Z𝜂
R𝜋alg∗ 𝜇⊗rpn

≃→ R𝜋∗𝜇⊗rpn .

Since they are discrete objects on quasi-compact schemes, these isomorphisms upgrade to isomorphisms in

D (Zét,CondAb). Evaluating them on Z = ℨ𝜂 = Z
rig
𝜂 , which is an affinoid open subspace of (Z𝜂)an, one gets

the A1-homotopy invariance for the coefficients 𝜇⊗rpn , from which follows the desired isomorphism by taking

limits over n ∈ N. □

4.2.19 - Remark. Unfortunately, there is no natural isomorphism

𝜋∗ : RΓproét (Z ,Qp (r ))
≃→ RΓproét (A1

Z ,Qp (r ))

since RΓproét (A1
Z ,Qp (r )) ; RΓét (A1

Z ,Zp (r ))Qp . It fails even for Z = Spa(K ,OK ); indeed, H 1
proét (A1

K ,Qp (1)) =
0 and H 1

proét (A1
K ,Qp (1))

≃→ Ω1 (A1
K ) by Colmez-Nizioł’s computation [18] and the Hochschild-Serre spectral

sequence, which is huge.

Nevertheless, we have a so-called fundamental motivic spectrum (RΓproét (−,Qp (r )))r in the sense of [2,

Definition 2.3.2]. Recall that the ∞-category of "motivic spectra" is defined as

SpP1 := SpP1 (ShvZar (SmZ,Spc∗)) := ShvZar (SmZ,Spc∗) [(P1)−1]

for the P1-action by the pointed projective line (P1,∞) on ShvZar (SmZ,Spc)22. A motivic spectra be-

21Or by a seemingly stronger result: locally acyclicity of smooth morphisms of schemes.
22Recall that the usual spectra construction inverts the usual action of the unit sphere S1 on Spc∗, which is the same as telescoping the

action S1 ⊗ − since the cyclic action 𝜏 = (123) : (S1 )⊗3 → (S1 )⊗3 is homotopic to id, as a result (−) [S−1 ] ≃ TelS1 (−) := colimS1⊗− (−)
is equivalent to the telescope construction. However, by contrast, ShvZar (SmZ,Spc∗ ) [ (P1 )−1 ] is rather the symmetric telescoping
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ing "fundamental" means roughly that it satifies Bass fundamental exact sequence. Of course, for any

V ∈ ModShvZar (SmZ,Spc) (PrL,⊗), i.e. any ∞-category presentably tensored over ShvZar (SmZ,Spc) (i.e. pre-

sentable ∞-category tensored together with a tensor action of ShvZar (SmZ,Spc) that preserves colimits

in each variable), we can define SpP1 (V∗) by formally inverting the P1-action on V∗. For example, con-

sider the presentably symmetric monoidal ∞-category V := ShvNis (RigSmK ,Sp) which admits a symmet-

ric monoidal functor from ShvZar (SmZ,Spc) via Spc → Sp and base change (left Kan extension) along

SmZ → SmOK → RigSmK where the last arrow is given by taking the rigid generic fibre (−)rig𝜂 . For

E = (Er )r ∈N := (RΓproét (−,Qp (r )))r ∈N, we have the following:

(i) The proétale cohomology satisfies Nisnevich descent, even éh-descent, on RigSmK .

(ii) The system E forms naturally a P1-spectrum in V , i.e. one can naturally make E ∈ SpP1 (V ). Indeed,
there is an equivalence

𝜋∗ ⊕ c ét1 (O(1)) ∪ 𝜋∗ : RΓproét (X ,Qp (r )) ⊕ RΓproét (X ,Qp (r − 1)) [−2]
≃→ RΓproét (P1

X ,Qp (r ))

provided by the projective bundle formula (4.2.17). So we have c ét1 (O(1)) : Er−1
≃→ Hom((P1

K ,∞),E).
(iii) It is a fundamental P1-spectrum, i.e. the Bass boundary map

𝜕∗ : ES1⊗Gm → EP1
,

identified as

𝜕∗X : RΓproét (Gm,X ,Qp (r )) [−1] → RΓproét (P1
X ,Qp (r )),

admits a natural right inverse, namely there exists a natural section sX : RΓproét (P1
X ,Qp (r )) →

RΓproét (Gm,X ,Qp (r )) [−1] such that naturally 𝜕∗X sX ≃ id. Indeed, there is a chain of morphisms

sX : RΓproét (P1
X ,Qp (r )) ≃ lim

U ∈Affd
RΓproét (P1

U ,Qp (r ))
≃← lim
U ∈Affd

RΓét (P1
U ,Qp (r ))

(s étU )U→ lim
U ∈Affd

RΓét (Gm,U ,Qp (r )) [−1]
→ lim

U ∈Affd
RΓproét (Gm,U ,Qp (r )) [−1]

≃ RΓproét (Gm,U ,Qp (r )) [−1]

where s étU is obtained by comparison with algebraic p-adic étale cohomology over the characteristic 0

field K , and satisfies 𝜕∗,étU s étU = id, whence 𝜕∗U sU = id thus 𝜕∗X sX = id. Therefore, E is a fundamental

motivic spectrum.

4.3 Chern classes for vector bundles

4.3.1. Syntomic Chern classes. Let Z ∈ RigK . Using the projective bundle formula (4.2.15) and Chern class

maps

(4.3.1.1) c syn0 : Qp
can→ RΓsyn (Z,0), c syn1 : O×Z → RΓsyn (Z, 1) [1],

we obtain syntomic Chern classes c syni (E) for any locally free sheaf E on Z . More precisely, there are unique

classes c syni (E) ∈ H 2i
syn (Z,i ) for i = 1, . . . ,d + 1 such that

d∑
i=0

c syn1 (O(1))
i ∪ 𝜋∗c synd+1−i (E) = c

syn
1 (O(1))

d+1c syn0 (1) ∈ H
2(d+1)
syn (PZ (E),d + 1).

procedure (or the so-called "symmetric spectra" SpΣ (−) construction) and admits a forgetful map ShvZar (SmZ,Spc∗ ) [ (P1 )−1 ] →
TelP1 (ShvZar (SmZ,Spc∗ ) ) := colimP1⊗− (ShvZar (SmZ,Spc∗ ) ) forgetting the symmetric group action, which is conservative but not
an equivalence.
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And we put c syni (E) = 0 for i > d + 1. In other words, c syni (E) can be read off from the minimal polynomial of

c syn1 (O(1)) in the graded algebra H 2•
syn (PZ (E),•).

It is easily verified that c syni (E) depends only on the class of E in the naive23 zeroth K -group of Z

K naive
0 (Z ) := {Étale/Analytic vector bundles over Z }gp

{[E1] + [E3] − [E2]
�� E2 is an OZ -extension of E3 by E1}

.

Hence we obtain the i -th syntomic Chern class maps

c syni : K naive
0 (Z ) → H 2i

syn (Z,i ), i ∈ N

extending those in (4.3.1.1).

4.3.2. Étale Chern classes. Similarly as above, using the projective bundle formula (4.2.17) and Chern class

maps

(4.3.2.1) c ét0 : Zp
can→ RΓét (Z ,Zp ), c ét1 : O×Z → RΓsyn (Z ,Zp (1)) [1],

one can define the i -th integral étale Chern class maps

c éti : K naive
0 (Z ) → H 2i

ét (Z ,Zp (i )) (∗), i ∈ N

extending those in (4.3.2.1).

4.3.3 - Remark. Alternatively, we might also define higher Chern classes using the following universal com-

putation: let GLn be the rigid-analytic general linear group of rank n over Qp and B• (−) be the simplicial

classifying space construction for monoids; then

H •syn (B•GLn,L ,•) ≃ H •syn (L,•)[c1, . . . ,cn]

for L = K or L = C and n ≥ 1, where ci ∈ H 2i
syn (B•GLn,L ,i ) is the i -th Chern class of the universal vector

bundle of rank n, and similarly

H •ét (B•GLn,L ,Zp (•)) ≃ H •ét (L,Zp (•)) [c1, . . . ,cn] .

Indeed, this follows by standard computation using the respective projective bundle formula and A1-homotopy

invariance, cf. [49, §2.A. BGL(n)].

It would require some work to pull these universal classes back along maps X → B•GLn in order to define

Chern classes. By naturality, these would coincide with our original definition of Chern class maps ci (E) for
vector bundles, cf. (4.5.9) for details of this construction.

Before proving compatibility of syntomic and étale Chern classes, we review some compatibility results.

4.3.4. Some compatibility results with comparison maps. Let us be more precise about the (iso)morphisms

(3.1.3.1) used to construct 𝜌arithsyn and 𝜌
geom
syn .

(i) The isomrophism Fil• (RΓdR (Z/K ) ⊗■K BdR) ≃ Fil•Hdg (RΓinf (X /B+dR) ⊗
■
B+dR

BdR) commutes with product
structures and Chern class maps c0 and c1. Indeed, arguing éh-locally, we may assume Z smooth affinoid. In

this case, the isomorphism is constructed via [9, Lemma 5.16, Lemma 5.17, especially formula (5.14)], where all

maps are compatible with product structures and respective Chern class maps c0 and c1.

(ii) The isomorphism RΓcris (𝔛) ⊗■Acris
BI ≃ RΓproét (X ,BI ) is compatible with product structures. Indeed,

the map is constructed locally for 𝔛 = Spf(R) framed by (Σ,Λ) [9, Notation 4.12] via the Čech-Alexander

23We keep the naive superscript as opposed to Andreychev’s analytic K -groups for adic spaces.
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computation

RΓcris (𝔛/A×cris) ≃ (DΣ,Λ (R)(0) → DΣ,Λ (R) (1) → DΣ,Λ (R)(2) → · · · )
→ (DΣ,Λ (R) → Hom(Z[ΓΣ,Λ],DΣ,Λ (R)) → Hom(Z[Γ2

Σ,Λ],DΣ,Λ (R)) → · · · )
≃ RΓ(ΓΣ,Λ,DΣ,Λ (R))
≃ RΓ(ΓΣ,Λ,BI (RΣ,Λ,∞))
≃ RΓ((𝔛𝜂)ét,BI )

where we followed the proof of [9, Corollary 4.16, Theorem 4.3] and used the map DΣ,Λ (R) → Acris (RΣ,Λ,∞) →
BI (RΣ,Λ,∞). Or samely, we may use Koszul complex computation

RΓcris (𝔛/A×cris) ≃ KoszDΣ,Λ (R ) ((𝜕𝜎)𝜎∈Σ, (𝜕𝜆,i )𝜆 ∈Λ,1≤i≤d )
→ KoszDΣ,Λ (R ) ((𝛾𝜎 − 1)𝜎∈Σ, (𝛾𝜆,i − 1)𝜆 ∈Λ,1≤i≤d )
≃ RΓ(ΓΣ,Λ,DΣ,Λ (R))
≃ RΓ(ΓΣ,Λ,BI (RΣ,Λ,∞))
≃ RΓ((𝔛𝜂)ét,BI )

using [9, Lemma 4.14, Lemma 4.15]. All maps here are compatible with product structures.

(iii) The isomorphism Fil•Hdg (RΓinf (X /B+dR) ⊗
■
B+dR

BdR) ≃ RΓproét (X ,Fil•BdR) is compatible with product struc-
tures. Indeed, the maps is constructed locally via

RΓinf (X /B+dR) ≃ KoszDΨ,Ξ,m (A) ((𝜕u )u∈Ψ⨿Ξ)
→ KoszDΨ,Ξ,m (A) ((𝛾u − 1)u∈Ψ⨿Ξ
→ Kosz(B+dR/Fil

m ) (A+Ψ,Ξ,∞ ) ((𝛾u − 1)u∈Ψ⨿Ξ)
≃ RΓ(ΓΨ,Ξ, (B+dR/Fil

m)(A+Ψ,Ξ,∞))
≃ RΓproét (X , (B+dR/Fil

m))

where we used the map DΨ,Ξ,m (A) → (B+dR/Fil
m) (A+Ψ,Ξ,∞) [9, Formula (5.19)].

(iv) The isomorphisms in (ii) and (iii) are compatible. This follows from the commutativity of [9, Proof

Proposition 5.11]

DΣ,Λ (R) BI (RΣ,Λ,∞)

DΨ,Ξ,m (A) (B+dR/Fil
m) (A+Ψ,Ξ,∞).

4.3.5 - Theorem. We have 𝜌arithsyn ◦ c
syn
1 = c ét1 as morphisms H

1
ét (Z ,O×Z ) → H 2

proét (Z,Qp (1)).

Proof. Let us elaborate the proof of the statement evaluated at a point, i.e. we will prove that for any line

bundle L on Zét, we have the identity

𝜌arithsyn (c
syn
1 (L)) = c

ét
1 (L) ∈ H

2
proét (Z ,Qp (1)) (∗).

The proof consists of fastidious reductions to the annulus case where an elementary computation is then done

(4.3.5.17), and can be skipped on first reading. For the condensed statement, the arguments are the same.

4.3.5.1. Let us first reduced to its geometric counterpart, and meanwhile giving another characterisation of the

first Chern class c1 (L) by using the simplicial classifying stack B•Gm . For this, let us denote by Gm = Gm,K the

rigid-analytic torus over K (i.e. analytification of the algebraic torus over K , to be distinguished from the unit

circle torus T1
K := Spa(K

〈
T ±1

〉
,OK

〈
T ±1

〉
)). The étale line bundle L determines a morphism fL : X → B•Gm
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(up to translation by Gm ). Let F be a big étale sheaf over SpecK , and denote

RΓét (B•Gm ,F) := lim
Δ
RΓét (G×•m ,F).

By the spectral sequence Ei ,j1 := H j
ét (G×im ,F) ↦→ H i+ j

ét (B•Gm ,F), we see that

(i) We have H 1
ét (B•Gm ,O×) ≃ H 0 (Gm ,O×) with a canonical element the coordinate function T ∈

H 0 (Gm ,O×); similarly in the geometric setup, we have H 1
ét (B•Gm,C ,O×) ≃ H 0 (Gm,C ,O×) with a canon-

ical element the coordinate function T ∈ H 0 (Gm,C ,O×).
(ii) We have

(4.3.5.2) H 2
ét (B•Gm ,Zp (1)) ≃ H 1

ét (Gm ,Zp (1))
(e ∗,𝜈∗ )
≃→ H 1

ét (K ,Zp (1)) ⊕ H 1
ét (Gm,C ,Zp (1))

where two component maps are induced by base change respectively along the unit section e :

Spa(K ,OK ) → Gm and the projection from the geometric rigid-analytic torus 𝜈 : Gm,C → Gm . Simi-

larly, we have

H 2
ét (B•Gm,C ,Zp (1)) ≃ H 1

ét (Gm,C ,Zp (1)).

Let us denote by 𝜅 be the canonical pro-(finite étale) Zp (1)-torsor

G̃m,C := lim
T ↦→T p

Gm,C → Gm,C ;

then [𝜅] is the canonical topological generator of H 1
ét (Gm,C ,Zp (1)) ≃ Zp . By an explicit calculation, we

have

c ét1 (T ) = [𝜅] ∈ H
1
ét (Gm,C ,Zp (1))

for T ∈ H 0 (Gm,C ,O×).
(iii) H 2

syn (B•Gm ,Zp (1)) ≃ H 1
syn (Gm ,Zp (1)) → H 1

HK (Gm) with a canonical element dlog t .

The morphism fL is naturally chosen (up to translation by Gm ) so that f ∗L : H 0 (Gm ,O×) ≃ H 1
ét (B•Gm ,O×) →

H 1
ét (X ,O×) is such that [T ] ↦→ [L]. By naturality of c ?1 , we have c ?1 (L) = c ?1 ( f

∗
L (T )) = f ∗L (c

?
1 (T )) for

? ∈ {syn, ét}. Also, 𝜌arithsyn commutes with f ∗L , so that 𝜌arithsyn (c
syn
1 (L)) = 𝜌arithsyn f

∗
L (c

syn
1 (T )) = f ∗L𝜌arithsyn (c

syn
1 (T ));

therefore, we are reduced to showing that

(4.3.5.3) 𝜌arithsyn (c
syn
1 (T )) = c

ét
1 (T ) ∈ H

1
ét (Gm ,Qp (1)).

Similarly as the direct sum decomposition (4.3.5.2), we have

(4.3.5.4) H 2
proét (B•Gm ,Qp (1)) ≃ H 1

proét (Gm ,Qp (1))
(e ∗,𝜈∗ )
≃→ H 1

proét (K ,Qp (1)) ⊕ H 0 (GK ,H 1
proét (Gm,C ,Qp (1))).

Therefore, (4.3.5.3) is further reduced to the identities

(4.3.5.5) e ∗𝜌arithsyn (c
syn
1 (T )) = e

∗c ét1 (T ) ∈ H
1
proét (K ,Qp (1))

(4.3.5.6) 𝜈∗𝜌arithsyn (c
syn
1 (T )) = 𝜈∗c ét1 (T ) ∈ H

0 (GK ,H 1
proét (Gm,C ,Qp (1))).

4.3.5.7. For (4.3.5.5), we notice that both sides are zero: on the one hand, on the other hand, by naturality

of 𝜌arithsyn and c syn1 , they commutes with e ∗, so we have e ∗𝜌arithsyn (c
syn
1 (T )) = 𝜌arithsyn (c ét1 (e

∗T )) and e ∗T = 1 ∈
H 0 (K ,O×); similarly, by naturality of c ét1 , we obtain e ∗c ét1 (T ) = c

ét
1 (e

∗T ) = 0.

4.3.5.8. Now, we are left with (4.3.5.6), which is the geometric counterpart of our theorem. Again by naturality,
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since 𝜈∗T = T , (4.3.5.6) amounts to the equality

(4.3.5.9) 𝜌
geom
syn (c syn1 (T )) = c

ét
1 (T ) ∈ H

0 (GK ,H 1
proét (Gm,C ,Qp (1))).

We may discard taking Galois invariants here as it will not help prove the identity.

The rigid-analytic torus Gm,C has a non quasi-compact semistable formal model over OK , and it also

has a projective semistable model by gluing two copies of SpfOK ⟨T ⟩ (allowing this time horizontal divisors

{T = 0}) along SpfOK
〈
T ±1

〉
. According to [16, Corollary 1.10] and [13, 4.3.2], we have computations

(i) H 1
HK (Gm,C ) = F̆ · cHK1 (T ),

(ii) H 1
proét (Gm,C ,Blog)N =0 ← (H 1

HK (Gm,C ) ⊗■F̆ Blog)N =0 = B · cHK1 (T ),
(iii) H 1

proét (Gm,C ,Blog)𝜑=p ,N =0 ← (H 1
HK (Gm,C ) ⊗■F̆ Blog)𝜑=0,N =0 = Qp · cHK1 (T ),

(iv) H 1
inf (Gm,C /B+dR) ≃ H

1
dR (Gm/K ) ⊗■K B+dR = B+dR · c

dR
1 (T ), where

cdR1 (T ) = [dlogT ]

by construction of (compatible) de Rham Chern class maps c inf1 and cdR1 (4.1.7).

(v) There is a short exact sequence [8, Formula (6.7)]

0→ H 1
dR (Gm/K ) ⊗■K B+dR → H 1

proét (Gm,C ,B+dR) → Ω1
Gm/K (Gm)d=0 ⊗■K C (−1) → 0

by taking the first cohomology group of RΓproét (Gm,C ,B+dR) = Fil0 (RΓdR (Gm/K ) ⊗■K BdR) [8, Theorem
6.5].

(vi) There is a natural map of short exact sequences

0 H 1
ét (Gm,C ,Qp (1)) Qp · [𝜅] 0

0 O(Gm,C )/Qp H 1
proét (Gm,C ,Qp (1)) Qp · cHK1 (T ) 0.

can 𝜌′

𝛽

Here 𝜌′ is supposed to behave like 𝜌
geom,−1
syn .

(vii) Consider the composition of natural maps

(4.3.5.10)

𝜄′HK : Qp · cHK1 (T ) = (H 1
HK (Gm,C ) ⊗■F̆ Blog)𝜑=p ,N =0

→ H 1
proét (Gm,C ,Blog)

→ H 1
proét (Gm,C ,B+dR) ≃ H

1Fil1 (RΓdR (Gm/K ) ⊗■K BdR)
⊃ H 1

dR (Gm/K ) ⊗■K B+dR
= B+dR · c

dR
1 (T ).

It matches cHK1 (T ) with cdR1 (T ) = [dlogT ] by its compatibility with the geometric Hyodo-Kato mor-

phism [9, Theorem 5.3 (ii)], hence it is injective. Moreover, the composition 𝜄′HK𝜌
′ coincides with the

composition map

(4.3.5.11) 𝜌′′ : H 1
ét (Gm,C ,Qp (1)) → H 1

proét (Gm,C ,B+dR)

induced by Qp (1) → B+dR sending 𝜀 = (𝜁pn )n ↦→ log[𝜀].

4.3.5.12. We claim that

(4.3.5.13) 𝜌′ (𝜅) = cHK1 (T ) ∈ (H 1
HK (Gm,C ) ⊗■F̆ Blog)𝜑=0,N =0 = Qp · cHK1 (T ).
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Admitting this, by construction of 𝜌
geom
syn (3.1.3) and compatibility between differntial symbols, we have

𝛽 𝜌
geom
syn (c syn1 T ) = cHK1 (T ), so 𝛽

(
c ét1 (T ) − 𝜌

geom
syn (c syn1 (T ))

)
= 0, or equivalently

𝛿(T ) := c ét1 (T ) − 𝜌
geom
syn (c syn1 (T )) ∈ ker(H

1
proét (Gm,C ,Qp (1)) → Qp ) = O(Gm,C )/Qp .

we need to show that the difference function 𝛿(T ) = 0. For this, consider the squaring morphism 𝜎 := (−)2 :

Gm,C → Gm,C over C given by T 2 ← � T . On the one hand, we have

𝜎∗ (c ét1 (T ) − 𝜌
geom
syn (c syn1 (T ))) = c

ét
1 (T

2) − 𝜌
geom
syn (c syn1 (T

2)) = 2(c ét1 (T ) − 𝜌
geom
syn (c syn1 (T ))) = 2𝛿(T )

by naturality of 𝜌geomsyn and c ?1 ; on the other hand, by naturality of O(Gm,C )/Qp ,

𝜎∗ (c ét1 (T ) − 𝜌
geom
syn (c syn1 (T ))) = 𝜎∗𝛿(T ) = 𝛿(T 2).

Therefore, 2𝛿(T ) = 𝛿(T 2) whence 𝛿(T ) = 0.

4.3.5.14. It now remains to show (4.3.5.13). The injectivity of 𝜄′HK (4.3.5.10) reduces it to

(4.3.5.15) 𝜌′′ (𝜅) = [dlogT ] ∈ H 1
proét (Gm,C ,B+dR) ←↪ H 1

dR (Gm/K ) ⊗■K B+dR,

where we used 𝜄′HK𝜌
′ = 𝜌′′ (4.3.5.11) and 𝜄′HK (cHK1 (T )) = cdR1 (T ) = [dlogT ] (see the point (x) above).

Before the proof, we introduce certain perfectoid covering of Gm for our computation. We denote by

Xn := Spa(K
〈
pnT ,pnT −1

〉
,OK

〈
pnT ,pnT −1

〉
) = {

��pn �� ≤ |T | ≤ ��p−n ��} ⊂ Gm the arithmetic annuli over K and

by Xn,C their base change to C . We do not use the pro-(finite étale) Zp (1)-torsor 𝜅 : G̃m,C → Gm,C . Instead,

consider the closed embeddings

Xn ↩→Yn := Spa(K ⟨Un ,Vn⟩ ,OK ⟨Un ,Vn⟩)

given by Un ↦→ pnT ,Vn ↦→ pnT −1. Consider X̃n,C the pullback along this closed embedding of the canonical

Zp (1)2-torsor affinoid perfectoid cover

Ỹn,C := Spa(C
〈
U 1/p∞
n ,V 1/p∞

n

〉
,OC

〈
U 1/p∞
n ,V 1/p∞

n

〉
) →Yn .

Then we have compatible strict inclusions of perfectoid space X̃n,C ⊂† X̃n+1,C induced by pUn ←� Un+1,pVn ←�
Vn+1. Their union X̃C is the canonical Zp (1)2-torsor perfectoid cover of Gm,C , with a Stein affinoid perfectoid

covering by X̃n,C . The system {H i
proét (X̃n,C ,B+dR)}n∈N is Mittag-Leffer [14, Lemma 3.10], and vanishes if i > 0

[50, Theorem 6.5], thus H i
proét (G̃m,C ,B+dR) = B

+
dR (G̃m,C ) if i = 0 and vanishes if i > 0. Then the Hochschild-

Serre spectral sequence and the lim1-sequence give

H 1
proét (Gm,C ,B+dR) = H

1 (Zp (1),B+dR (X̃C ))
≃→ lim

n
H 1 (Zp (1),B+dR (X̃m,C )).

Now the proof reduces to identifying

(4.3.5.16) 𝜌′′ (𝜅) |Xn,C = [dlogT ] ∈ H 1 (Zp (1),B+dR (X̃m,C )).

4.3.5.17. Let us prove (4.3.5.16). It is direct to check that 𝜌′′ (𝜅) |Xn,C ∈ H 1
proét (Xn,C ,B+dR) ≃

H 1 (Zp (1)2,B+dR (X̃n,C )) ≃ H
1 Hom((Zp (1)2)×•,B+dR (G̃m,C )) (by Hochschild-Serre spectral sequence for the first

isomorphism and (1.3.4) for the second) is represented by the continuous cocycle

(4.3.5.18) (𝛾u , 𝛾v ) ↦→ log[𝛾u ] − log[𝛾v ] .
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Now we will go through the construction of the comparison map RΓdR (X /K ) ⊗■K B+dR → RΓproét (XC ,B+dR)
[9, Proof of Theorem 5.9] (see the point (iii) above) in order to identify the image of [dlogT ] in

H 1
proét (Xn,C ,B+dR) ≃ H

1 (Zp (1)2,B+dR (X̃n,C )). Let Dn := DXn,C (Yn,C ) be the ring of functions of the B+dR-envelope

of Xn,C in Yn,B+dR as in [9, Lemma 5.16] (cf. [31, §2.2]). Then RΓdR (Xn/K ) ⊗■K B+dR ≃ KoszDn (𝜕u ,𝜕v ) where
𝜕u = u 𝜕

𝜕u ,𝜕v = v 𝜕
𝜕v are log derivations, and the class [dlogT ] = [dlog(pnT )] = −[dlog(pnT −1)] corresponds

to

[(1,−1)] ∈ H 1KoszDn (𝜕u ,𝜕v ).

The map KoszDn (𝜕u ,𝜕v ) → KoszDn (𝛾u − 1, 𝛾v − 1) of the point (iii) is induced by ([10, Proposition 5.34])

(Dn Dn)

(Dn Dn)
id

𝜕u

hu ,𝜀
𝛾u ,𝜀

where 𝜀 ∈ Zp (1) is a chosen generator, h𝜀 :=
∑
i≥1
(log[𝜀] )i

i ! 𝜕i−1u , and the u-component element 𝛾u ,𝜀 ∈ Zp (1),
alias of 𝜀, acts on the B+dR-algebra Dn by 𝛾(Un) = [𝜀]Un ; similarly for the variable v part. Under this map, the

class [dlogT ] is mapped to

[(log[𝜀],− log[𝜀])] ∈ H 1KoszDn (𝛾u ,𝜀 − 1, 𝛾v ,𝜀 − 1).

Finally, using the map Dn → BdR (X̃n,C ),Un ↦→ [(pnT )♭],Vn ↦→ [(pnT −1)♭], we obtain the class

(4.3.5.19) [(log[𝜀],− log[𝜀])] ∈ H 1KoszB+dR (X̃n,C )
(𝛾u ,𝜀 − 1, 𝛾v ,𝜀 − 1).

To conclude, we claim that (4.3.5.19) recovers the formula (4.3.5.18) for 𝜌′′ (𝜅) |Xn,C under the identification

H 1KoszB+dR (X̃n,C )
(𝛾u − 1, 𝛾v − 1) ≃ H 1 (Zp (1)2,B+dR (X̃n,C )) ≃ H

1 Hom((Zp (1)2)×•,B+dR (G̃m,C )), which we sum-

marised in the lemma 1.3.8.

□

4.3.6 - Theorem. The syntomic and étale Chern classes are compatible, i.e. for Z ∈ RigK and i ∈ N, the following
diagram commutes

H 2i
syn (Z ,i )

K naive
0 (X )

H 2i
ét (Z,Qp (i ))

𝜌arithsyn

c syni

c éti

Proof. In view of projective bundle formulae defining general Chern classes, it suffices to show that the com-

parison map 𝜌arithsyn : RΓsyn (Z ,i ) → RΓproét (Z,Qp (i )) commutes with product structures, c0 on the zeroth

cohomology and c1 on the first cohomology (i.e. c1 (L) for line bundles L). By construction of 𝜌arithsyn (3.1.3), it

suffices to prove the corresponding statement for the composition

RΓsyn (Z,i )
𝜌arithsyn→ RΓproét (Z ,Qp (r )) → RΓproét (X ,Qp (r ))

≃→
[
RΓproét (X ,Blog [

1
t
])𝜑=pr ,N =0 → RΓproét (X ,BdR/t rB+dR)

]
.

But it is clear that the latter preserves product structures by (4.2.1), commutes with c0 by construction, and

commutes with c1 for line bundles by (4.3.5). □
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4.4 Image of étale regulators

4.4.1. Étale regulators. For Z ∈ RigK and i ∈ N, let c̄ éti : K naive
0 (Z ) → H 0 (GK ,H 2i

ét (ZC ,Zp (i ))) be the

map induced by the i -th étale Chern class map and the Hochschild-Serre spectral sequence boundary map

𝛿0 : H 2i
ét (ZC ,Zp (i )) → H 0 (GK ,H 2i

ét (ZC ,Zp (i ))). We define

(4.4.1.1) K naive
0 (Z )0 := ker(K naive

0 (Z )
c̄ éti→ H 0 (GK ,H 2i

ét (ZC ,Zp (i ))))

and the i -th étale regulator map as the map

(4.4.1.2) r éti : K naive
0 (Z ) → H 1 (GK ,H 2i−1

ét (ZC ,Zp (i )))

induced from c éti |K naive
0 (Z )0 and the Hochschild-Serre spectral sequence map

𝛿1 : H 2i
ét (ZC ,Zp (i ))0 := ker 𝛿0 → H 1 (GK ,H 2i−1

ét (ZC ,Zp (i ))).

4.4.2 - Theorem. Let Z ∈ RigK be proper. The étale regulator map r
ét
i factors through the subgroup

H 1
st (GK ,H 2i−1

proét (ZC ,Qp (i ))) ⊂ H 1 (GK ,H 2i−1
proét (ZC ,Qp (i ))).

Proof. By (4.3.6) and (3.2.17), we have the following commutative diagram

H 2i
syn (Z ,i ) H 0

st (GK ,H 2i
ét (ZC ,Qp (i )))

K naive
0 (Z )

H 2i
ét (Z,Qp (i )) H 0 (GK ,H 2i

ét (ZC ,Qp (i ))).

𝜌arithsyn

𝛿
syn
0

≃ can

c syni

c éti

𝛿0

Hence the image of K naive
0 (Z )0 under c syni is contained in H 2i

syn (Z,i )0 := ker(𝛿0◦𝜌arithsyn ) = ker 𝛿syn0 . Consequently,

again by (3.2.17), we obtain the following commutative diagram

H 2i
syn (Z ,i )0 H 1

st (GK ,H 2i−1
ét (ZC ,Qp (i )))

K naive
0 (Z )0

H 2i
ét (Z,Qp (i ))0 H 1 (GK ,H 2i−1

ét (ZC ,Qp (i )))

𝜌arithsyn

𝛿
syn
0

can

c syni

c éti

𝛿0

which shows the desired factorisation. □

4.5 Higher Chern class maps and étale regulators

4.5.1. Unstable A1-homotopy theory of rigid spaces. Let us first recall the related materials from [22, Section

3]. Let (R,R+) be a uniform Huber pair with associated rigid space S = Spa(R,R+). Let C be a presentable

category of coefficients, e.g. C = pro(Spc), C = prolight(Spc), C = Condlight(Spc) be the category of light

condensed anima, or C = Cond𝜅 (Spc) be the category of 𝜅-condensed anima, where 𝜅 is some uncountable

strong limit cardinal. Here, prolight (−) denote the full subcategory of pro(−) consisting of those pro-objects

that can be indexed by N.
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We define the unstable rigid motivic homotopy category with coefficeints in C as the reflective subcategory

RigH(S ,C) := ShvA
1

Nis (RigSmS ,C) ⊂ ShvNis (RigSmS ,C) ⊂ PShv(RigSmS ,C)

spanned by A1-invariant Nisnevich sheaves, with left adjoint the motivic localisation functor Lmot := Lmot,C .

If C is also cocomplete, then the motivic localisation can be described by the colimit of functors

Lmot ≃ colimn (LNisLA1 )◦n24, and the A1-localisation functor LA1 : PShv(RigSmS ,C) → PShvA
1 (S ,C) ⊂

PShv(RigSmS ,C) can be described by the formula [22, Lemma 3.6]

(LA1F ) (X ) ≃ colimΔop F (X × Δ•)

where the analytic n-simplex Δn := {∑n
i=0 Xi = 1} ⊂ An+1

K is the analytification of its algebraic analogue.

If C is moreover stable (for example the ∞-category of spectra Sp), then we define the effective stable

homotopy category with coefficients in C as

RigSHeff (S ,C) := RigH(S ,C).

4.5.2 - Example. According to previous results, for r ∈ N, the syntomic cohomology RΓsyn (−,r ) and the

integral étale cohomology RΓét (−,Zp (r )) define objects of RigH(S ,Cond(Sp)) for S ∈ RigSmK . Here, we

have used canonical localisation embeddings

D (Mod■Zp ) ↩→ D (CondAb) ≃ Shvhyp(∗proét,D (Ab)) ↩→ Cond(Sp)

which preserves limits to view solid cohomology theories as valued in Cond(Sp).

Another source of examples of objects in RigH(S ,Condlight (Spc)) come from the analytic K-theory.

4.5.3. Analytic K-theory. Recall that the connective analytic K-theory of a rigid space Z ∈ RigK is defined as

(4.5.3.1) k an (Z ) := " lim " jK≥0 (Z ⟨Δ𝜋 j ⟩) ∈ prolight (Sp);

here, we define

K≥0 (Z ⟨Δ𝜋 j ⟩) := colimΔop K≥0 (Z
〈
Δ•𝜋 j

〉
),

where K≥0 (−) on the right is the usual connective algebraic K-theory à la Thomason-Trobaugh [56, Chapter IV,

Remark 8.5.5]25, which is equivalent to the connective cover of the non-connective algebraic K-theory K (−).
Doing the same thing for its connected cover K≥126, we define

(4.5.3.2) k an≥1 (Z ) := " lim " jK≥1 (Z ⟨Δ𝜋 j ⟩) ∈ prolight (Sp).

Notice that k an≥1 (Z ) is different in general from the connected cover 𝜏≥1k an (Z ), but we still have a weak fibre

sequence27 in prolight (Sp) [37, Lemma 6.4] [22, Formula (5.3.1)]

(4.5.3.3) k an≥1 (Z ) → k an (Z ) → " lim " jK0 (Z ⟨Δ𝜋 j ⟩).
24we need to take this colimit since neither Nisnevich sheafification nor A1-localisation of presheaves preserve the property of the other

one.
25The original reference for Thomason-Trobaugh K-theory spectrum is [54, Definition 3.1]; it is a connective spectrum. One can also

find a review and further discussion in an ∞-categorical account in [7, §7]. Furthermore, one can also refer to these references for the
non-connective algebraic K -spectrum à la Bass-Thomason-Trobaugh via Bass construction [54, Definition 6.4] [56, Chapter IV, Definition
10.4] [7, Definition 9.6]; its connective cover recovers the above mentioned connective K-theory spectrum.

26The notation for the connected cover 𝜏≥1K in [37] is KGL, while it is denoted by K≥1 in [22]. We adopted the latter.
27Recall that [37, 22] there is a functor 𝜄∗ : pro(Sp) → pro(Sp+ ) , " lim "I Xi ↦→ " lim "N×I 𝜏≤nXi . A morphism in pro(Sp) is said to be a

weak equivalence if it is an equivalence after applying 𝜄∗, a weak fibre sequence is a sequence which becomes a fibre sequence after applying
𝜄∗.
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The last term is isomorphic to K0 (O(Z )) for Z ∈ RigSmK under the condition (†K ), or more specifically for

Z = Spa(A,A•) ∈ RigSmK with A (regular) satisfying (†A) [37, Corollary 5.15, Lemma 6.4]. It gives rise to

a fibre sequence in Condlight(Sp) after applying the limit preserving functor 𝛾light (1.2.1, vi, vii), and we see

then that 𝛾lightk an (Z ) ∈ Condlight (Sp≥−1)28. Finally, the non-connective analytic K-theory on RigK is defined

objectwisely using the analytic Bass construction29 as

(4.5.3.4) K an := (k an≥1)
B ;

it is A1-homotopy invariant by construction and satisfies Nisnevich descent [38, Theorem 2.10] [22, §5.1]; and

it is homotopically bounded below, or more precisely K an (Z ) ∈ prolight(Sp≥− dimZ−1) for Z ∈ RigK , by [38,

Theorem 2.4], since any affinoid Tate algebra A over K has a Noetherian ring of definition of dimension

dimA + 1.

We also have the KaroubiVillamayor analogue of k an

KV an := " lim "𝜌BGL(O(− × Δ𝜌)) ∈ pro(Spc∗).

It actually belongs to prolight (Spc0∗ ) where Spc0∗ denotes the ∞-category of pointed connected spaces.

4.5.4. Let A be a Tate ring, i.e. a Huber ring with a topologically nilpotent unit. We consider the following

condition on A [37, §3.2]

(†A)
There exists a Noetherian ring of definition A0 ⊂ A and a desingularisation, i.e. a proper morphism

of schemes p : X → SpecA0 with X regular and such that p is an isomorphism over SpecA.

This condition makes

(4.5.4.1) K an (A) = (k an≥1)
B (A) → (k an)B (A)

an weak equivalence in prolight (Sp) and also induces weak equivalences in pro(Sp)

(4.5.4.2) 𝜋0 (K an (A)) ≃ K0 (A), 𝜏≥0 (K an (A)) ≃ k an (A), KV an (A) ≃ Ω∞𝜏≥1 (k an (A)) ≃ Ω∞𝜏≥1 (K an (A))

by main results of [37, Corollary 6.20 and Lemma 7.5].

Consider also the following condition on some base Tate ring R:

(†K ) Every regular and topologically finite type K -algebra A satisfies (†A).

4.5.5 - Remark. Although 𝛾light is only left t-exact [22, Lemma A.19], we claim that the fundamental groups

and truncations in (4.5.4.2) can either be taken in prolight (Sp) or in Condlight(Sp), using the following lemma:

4.5.5.1 - Lemma. Let X = " lim "i ∈NXi ∈ prolight(Sp).

(i) Let n ∈ Z such that 𝜋nX = " lim "i ∈N𝜋nXi ∈ prolight (Ab) is a Mittag-Leffler system. Then we have canonical
equivalences

𝛾light (𝜏≥nX )
≃→ 𝜏≥n (𝛾lightX ), 𝛾light(𝜏≤n−1X )

≃← 𝜏≤n−1 (𝛾lightX ).

(ii) If moreover 𝜋n+1X = " lim "i ∈N𝜋n+1Xi ∈ prolight (Ab) is a Mittag-Leffler system. Then we have canonical
equivalences

𝛾light(𝜏≥n+1X )
≃→ 𝜏≥n+1 (𝛾lightX ), 𝛾light (𝜏≤nX )

≃← 𝜏≤n (𝛾lightX ), 𝛾light(𝜋nX ) ≃ 𝜋n (𝛾lightX ).
28Although kan ∈ prolight (Sp≥0 ) , it is a priori not clear whether 𝛾light (kan (Z ) ) ∈ Condlight (Sp≥0 ) or not, because of the fact that

𝛾light is in general only left t-exact, but not right t-exact. Nevertheless, as the projective system is N-indexed, we have 𝛾lightkan (Z ) ∈
Condlight (Sp≥−1 ) and, by the Milnor sequence, that 𝜋−1 (𝛾lightkan (Z ) ) ≃ lim1

j K0 (Z
〈
Δ𝜋 j

〉
) .

29See [37, §6.1] or [22, §5.3] for details of the analytic Bass construction.
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Proof. (i) Consider the (weak) fibre sequence 𝜏≥nX → X → 𝜏≤n−1X in prolight(Sp). Applying 𝛾light, we obtain

a fibre sequence

𝛾light (𝜏≥nX ) → 𝛾light(X ) → 𝛾light (𝜏≤n−1X )

in Condlight(Sp). As 𝛾light is left t-exact, the third term 𝛾light(𝜏≤n−1X ) lies in Condlight (Sp)≤n−1. As for the first
term 𝛾light (𝜏≥nX ), a priori it lies in Condlight (Sp≥n−1) as the projective system is N-indexed, and by Milnor

sequence, we have 𝜋n−1 (𝛾light (𝜏≥nX )) = lim1
n 𝜋0Xn . Now the Mittag-Leffler condition implies that this last lim1

vanishes, whence 𝛾light (𝜏≥nX ) ∈ Condlight (Sp)≥n ≃ Condlight (Sp≥n); in particular the above fibre sequence

gives the truncations 𝜏≥n and 𝜏≤n−1 of 𝛾lightX .

(ii) Consider this time the fibre sequence

𝛾light (𝜏≥n+1X ) → 𝛾light(X ) → 𝛾light (𝜏≤nX )

in Condlight(Sp). By (i) applied to n + 1, we obtain equivalences

𝛾light (𝜏≥n+1X )
≃→ 𝜏≥n+1 (𝛾lightX ), 𝛾light (𝜏≤nX )

≃← 𝜏≤n (𝛾lightX ).

Finally, consider the fibre sequence

𝛾light (𝜋nX ) → 𝛾light(𝜏≤nX ) → 𝛾light (𝜏≤n−1X )

in Condlight (Sp). The Mittag-Leffler property of 𝜋nX again implies that 𝛾light(𝜋nX ) ∈ Cond(Sp)♡ [n], so we

get

𝛾light(𝜋nX ) ≃ 𝜏≥n𝛾
light(𝜏≤nX )

≃← 𝜏≥n𝜏≤n (𝛾lightX ) ≃ 𝜋n (𝛾lightX ).

□

Let us deduce the above claim from the lemma. Let us check the conditions:

• Under the regularity and (†A) condition, we have 𝜋0 (K an (A)) = " lim " jK0 (A⟨Δ𝜋 j ⟩) ≃ K0 (A); in particu-

lar, this tower is Mittag-Leffler. So the condition (i) of the above lemma is verified for n = 0.

• Next, before continuing, recall that for any affinoid Tate algebra A over K (or more generally a complete

normed ring, not necessarily commutative nor unital), we have 𝜋1 (KV an (A)) ≃ " lim "𝜌GL(A)/GL(A)𝜌
in pro(Ab) [37, Lemma 7.3], where GL(A)𝜌 ⊂ GL(A) is the subgroup generated by matrices g such that

limn→+∞
(g − 1)n𝜌n = 0, cf. loc. cit., which is a normal subgroup; so GL(A)𝜌 decreases as 𝜌 tends

to +∞. In particular, the tower 𝜋1 (KV an (A)) is a Mittag-Leffler system and has a countable cofinal

subsystem, hence the condition (ii) of the lemma is also verified for n = 0.

Now we deduce from the lemma the canonical natural equivalences

𝜏≥0 (𝛾lightK an (A)) ≃ 𝛾lightk an (A), 𝛾light(𝜏≥1 (K an (A))) ≃→ 𝜏≥1 (𝛾light(K an (A))), 𝛾light(𝜋0 (K an (A))) ≃ 𝜋0 (K an (A)).

Our claim then follows.

4.5.6 - Example. If the condition (†K ) holds, then by representability of analytic K-theory [22, Theorem 5.7],

there is a canonical equivalence

(4.5.6.1) Lmot (Z × BGL)
≃→ Ω∞𝜏≥0Lmotk an

≃→ Ω∞𝜏≥0Lmot (k an)B
≃← Ω∞𝜏≥0K an30

in the category RigH(K ,Condlight (Spc)); in fact, there is already an equivalence LA1 (Z × BGL) ≃ Ω∞𝜏pre≥0K
an

on AffdSmK under this assumption, whence an equivalence LNisLA1 (Z × BGL) ≃ Ω∞𝜏≥0K an by Nisnevich

30Here, by abuse of notation, we denoted by the same notation K an the image of K an via the small limits preserving and conservative
functor 𝛾light : prolight (Sp+ ) → Condlight (Sp) , cf. [?, Lemma A.8]dahlhausenyaylali2024A1htpyRig

85



descent of K an [22, Lemma 5.6]. Its proof will be recalled with more details in the proof of the following (4.6.3),

though treated there with respect to the étale topology. Without assumption (†K ), there are still natural maps

(4.5.6.1), but they are not necessarily equivalences.

This example motivates the following definition.

4.5.7. Connective motivic analytic K-theory. Let BGL be the analytic sheafification of the presheaf

RigSmop
K → Cond(Spc),Z ↦→ BGL(OZ (Z )). Alternatively, BGL = LNis lim−−→n

��B•ỸGLn

��; this is also the ana-

lytification of its algebraic analogue. We define the connective motivic analytic K-theory over K as the object

(4.5.7.1) k an,mot := Lmot (Z × BGL) ∈ RigH(K ,Cond(Spc)).

For Z ∈ RigSmK , we define its non-negative motivic K -groups as the homotopy groups of k an,mot (Z ) ∈
Cond(Sp)

k an,mot
j (Z ) := 𝜋 j (k an,mot (Z )) ∈ CondAb.

Essentially by construction, it is clear that there is a natural map

(4.5.7.2) K naive
0 (Z ) → k an,mot

0 (Z )(∗).

4.5.8. Enriched Yoneda lemma. Putting ourselves first into a general setting, let E ∈ CAlg(PrL,⊗) be a

presentably symmetric monoidal presentable ∞-category (i.e. a symmetric monoidal ∞-category which is

presentable and such that the tensor product preserves colimits in each factor), with canonical unit iE :

Spc → E . On the one hand, for any F,G ∈ Fun(RigSmop
K ,E), there is a E-enriched internal mapping object

HomE (F,G ) ∈ E such that HomE (F,−) : Fun(Cop,E) → E is right adjoint to pointwise −⊗F : E → Fun(Cop,E).
On the other hand, we denote Ỹc = iE (HomC (−,c )) ∈ Fun(Cop,E) the E-enriched Yoneda embedding of c ∈ C,
which is the usual Yoneda embedding valued in Spc composed with iE . Our key ∞-categorical claim will be

the E-enriched Yoneda lemma [22, Lemma B.3], namely there is a natural31 equivalence F (c ) ≃ HomE (Ỹc ,F ) in
E for any F ∈ Fun(Cop,E).

Specialised in our situation where C = RigSmS and E = Condlight(Sp), the unit functor Spc →
Condlight (Sp) factoring as Spc Σ∞→ Sp const→ Cond(Sp) in PrL,⊗ , the enriched Yoneda lemma implies that

for F ∈ Fun(RigSmop
S ,Cond(Sp)), there is a natural equivalence

(4.5.8.1) HomCondlight (Sp) (LmotΣ
∞ỸZ ,F) ≃ HomCondlight (Sp) (Σ

∞ỸZ ,F) ≃ F (Z )

in Condlight (Sp). Indeed, the first equivalence holds as the functor Lmot is compatible with the Condlight (Sp)-
module structure by base change of the motivic localisation functor [22, Remark 4.1]; the second follows from

the enriched Yoneda lemma.

4.5.9. Higher syntomic and étale Chern class maps. To explain the idea, let us first take some F ∈
RigH(K ,Cond(Sp)). The evaluation on Z ∈ RigSmK (i.e. pullback along the embedding of ∞-categories
({Z }, idZ ) ↩→ C) induces a map

HomCond(Sp) (LmotΣ
∞k an,mot,F) → HomCond(Sp) (LmotΣ

∞k an,mot (Z ),F (Z ))
→ HomCond(Sp) (Σ

∞k an,mot (Z ),F (Z ))
in Cond(Sp). Let i ∈ Z. Any element

𝔠 ∈ 𝜋−i HomCond(Sp) (LmotΣ
∞k an,mot,F) (∗)

31It is natural in objects of C for any given C by Hinich’s work [33], but the naturality in C of this transformation have only been proven
later by Shay Ben-Moshe in [5].
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determines a class in 𝜋0 HomCond(Sp) (Σ∞k an,mot,ΣiF), whence morphisms

𝔠 j : 𝜋 j (Σ∞k an,mot (Z )) → 𝜋 j−i (F (Z )), j ∈ N

in CondAb. As 𝜋 j (Σ∞k an,mot (Z )) ≃ lim−−→m→+∞
𝜋 j+mΣmk an,mot (Z ), we extract from above morphisms (by abuse

of notation)

𝔠 j : k
an,mot
j (Z ) → 𝜋 j−i (F (Z )), j ∈ N

in CondAb. Then, let us give an expression of HomCond(Sp) (LmotΣ∞k an,mot,F). As Lmot and Σ∞ commute

with colimits, we can write LmotΣ∞k an,mot =
∐

Z lim−−→n

��LmotΣ∞ỸB•GLn
��. Therefore, we can compute

(4.5.9.1)

HomCond(Sp) (LmotΣ
∞k an,mot,F) ≃ HomCond(Sp) (

∐
Z

lim−−→
n

��LmotΣ
∞ỸB•GLn

��,F)
≃

∏
Z

lim←−−
n

lim
Δ

HomCond(Sp) (LmotΣ
∞ỸGL×•n ,F)

≃
∏
Z

lim←−−
n

lim
Δ

F (GL×•n ) =:
∏
Z

lim←−−
n

F (B•GLn)

where the last equivalence is due to the enriched Yoneda lemma (4.5.8.1).

We are now ready to construct rigid-analytic syntomic and étale Class maps. By computation of (4.3.3),

there are universal syntomic Chern classes

C syn
i := (ci )n∈Z ∈

∏
Z

lim←−−
n

H 2i
syn (B•GLn ,i ) (∗), i ∈ N

for F = RΓsyn (Z,i ) and universal étale Chern classes

C ét
i := (ci )n∈Z ∈

∏
Z

lim←−−
n

H 2i
ét (B•GLn ,Zp (i )) (∗), , i ∈ N

for F = RΓét (Z,Zp (i )). Applying the above construction to these classes, one obtains natural higher syntomic

Chern class maps

(4.5.9.2) c syni ,j : k an,mot
j (Z ) → H 2i− j

syn (Z,i ), i , j ∈ N

and natural higher étale Chern class maps

(4.5.9.3) c éti ,j : k
an,mot
j (Z ) → H 2i− j

ét (Z,Zp (i )), i , j ∈ N

in CondAb. Since both this construction and that of (4.3.1) and (4.3.2) rely on the projective bundle formula,

by checking various compatibilities, one verifies that these Chern class maps are compatible through the

comparison map (4.5.7.2).

4.5.10. Higher étale regulators. For Z ∈ RigSmK and i , j ∈ N, let c̄ éti ,j : k an,mot
j (Z ) →

H 0 (GK ,H 2i− j
ét (ZC ,Zp (i ))) be the map induced by the higher étale Chern class map c éti ,j and the Hochschild-

Serre spectral sequence boundary map 𝛿0 : H 2i− j
ét (ZC ,Zp (i )) → H 0 (GK ,H 2i− j

ét (ZC ,Zp (i ))). We define

(4.5.10.1) k an,mot
j (Z )0 := ker(k an,mot

j (Z )
c̄ éti ,j→ H 0 (GK ,H 2i− j

ét (ZC ,Zp (i ))))

and the higher étale regulator map

(4.5.10.2) r éti ,j : k
an,mot
j (Z )0 → H 1 (GK ,H 2i− j−1

ét (ZC ,Zp (i )))
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induced from c éti ,j |kan,mot
j (Z )0 and the Hochschild-Serre spectral sequence map

𝛿1 : H
2i− j
ét (ZC ,Zp (i ))0 := ker 𝛿0 → H 1 (GK ,H 2i− j−1

ét (ZC ,Zp (i ))).

4.5.11 - Theorem. Let Z ∈ RigSmK be proper. The étale regulator map r éti ,j (4.5.10.2) factors through the condensed

subgroup

H 1
st (GK ,H

2i− j−1
ét (ZC ,Qp (i ))) ⊂ H 1 (GK ,H 2i− j−1

ét (ZC ,Qp (i ))).

Proof. By (4.3.6) and (3.2.17), we have the following commutative diagram

H 2i− j
syn (Z,i ) H 0

st (GK ,H
2i− j
ét (ZC ,Qp (i )))

k an,mot
j (Z )

H 2i− j
ét (Z,Qp (i )) H 0 (GK ,H 2i− j

ét (ZC ,Qp (i ))).

𝜌arithsyn

𝛿
syn
0

≃ can

c syni ,j

c éti ,j

𝛿0

Hence the image of k an,mot
j (Z )0 under c syni ,j is contained in H 2i− j

syn (Z,i )0 := ker(𝛿0 ◦ 𝜌arithsyn ) = ker 𝛿syn0 . Conse-

quently, again by (3.2.17), we obtain the following commutative diagram

H 2i− j
syn (Z,i )0 H 1

st (GK ,H
2i− j−1
ét (ZC ,Qp (i )))

k an,mot
j (Z )0

H 2i− j
ét (Z,Qp (i ))0 H 1 (GK ,H 2i− j−1

ét (ZC ,Qp (i )))

𝜌arithsyn

𝛿
syn
0

can

c syni ,j

c éti ,j

𝛿0

which shows the desired factorisation. □

4.6 Towards étale analytic K-theory

The natural map (4.5.6.1) is only valid under the condition (†K ), which has not been proven to be true yet.

However, in the scope of an étale local theory, (†A) is true by Temkin’s altered local uniformisation theorem

[53, Corollary 3.3.2], so that we may obtain an unconditional representability of the étale analytic K-theory by

going through the arguments in [22, §5], as we shall explain below in this subsection.

4.6.1. Étale analytic K-theory. Recall that for a Tate ring A, there is a natural map in prolight (Sp)

(4.6.1.1) K an (A) = (k an≥1)
B (A) → (k an)B (A),

and we view it by application 𝛾light as a map in Condlight(Sp). If moreover A is regular and satisfies (†A), then
(4.6.1.1) becomes an equivalence [37, Lemma 6.18], and we have equivalences [37, Corollary 6.20]

k an (A) ≃→ 𝜏≥0 (k an)B (A)
≃← 𝜏≥0K an (A).

Let the étale analytic K-theory over K be the étale sheaf

K an,ét := LétK an ∈ Shvét (RigSmK ,Condlight (Sp))
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which is the étale sheafification of the presheaf K an ∈ PShv(RigSmK ,Condlight(Sp)). It might not be A1-

homotopy invariant due to non-quasi-compactness of A1. We could also consider further eh-sheafification

K an,éh := LéhK an ∈ Shvéh (RigK ,Cond
light (Sp)); but we will not pursue this in the following.

4.6.2. For Spa(A,A+) ∈ AffdK , there are natural maps

(4.6.2.1) Z(A) × BGL(A) → Ω∞K≥0 (A) → Ω∞𝜏≥0 (k an)B (A) ← Ω∞𝜏≥0K an (A)

by construction. Moreover, since (k an)B and K an are A1-homotopy invariant, so are Ω∞,pre𝜏pre≥0 (k
an)B and

Ω∞,pre𝜏pre≥0K
an. Therefore, we obtain maps in PShv(RigSmK ,Cond(Sp))

(4.6.2.2) LA1 (Z × BGL) → Ω∞,pre𝜏pre≥0 (k
an)B ← Ω∞,pre𝜏pre≥0K

an.

4.6.3 - Theorem (Representability of étale analytic K-theory). The map (4.6.2.2) induces equivalences after étale

sheafification, that is, we have equivalences in Shvét (RigSmK ,Condlight (Spc))

LétLA1 (Z × BGL) ≃→ Ω∞𝜏≥0Lét (k an)B
≃← Ω∞𝜏≥0LétK an = Ω∞𝜏≥0K an,ét.

Proof. Recall that sheafification commutes with Ω∞ and 𝜏≥0, namely we have equivalence of functors

L𝜏Ω∞,pre𝜏
pre
≥0

≃→ Ω∞𝜏≥0L𝜏 for any topology 𝜏. So we are reduced to showing that the maps (4.6.2.2) becomes

equivalences on certain basis of RigSmét or on stalks (i.e. on strict henselian local rings).

By Temkin’s altered local uniformisation theorem [53, Corollary 3.3.2], any Z ∈ RigSmK is étale locally

of the form Spa(A,A◦) with SpfA◦ being a semistable formal scheme over OL for some finite extension L/K ,

hence A is regular and satisifies (†A). The second equivalence of (4.6.2.2) is true for such Spa(A,A◦) ∈ RigSmK

by (4.5.4.1), hence after étale sheafification we obtain Lét (k an)B
≃← LétK an. So we are left to prove the first

equivalence.

We now proceed exactly as in the proof of [22, Theorem 5.7]. Using the fibre sequence "𝜏≥1 → 𝜏≥0 → 𝜋0"

in Condlight (Sp), which stays a fibre sequence in Condlight (Spc) after applying Ω∞, it is enough to examine

respectively the connected covers and in degree zero, namely the maps in PShv(RigSmK ,Cond(Spc)) resp.
in PShv(RigSmK ,CondAb)

BGL→ Ω∞,pre𝜏pre≥1 (k
an)B ← Ω∞,pre𝜏pre≥1 K

an, resp. Z→ 𝜋
pre
0 (k

an)B ← 𝜋
pre
0 K an.

In degree zero, we have K an
0 (A

′) ≃ K0 (A′) for strict henselian local rings A′ by Temkin’s result and

(4.5.4.2), and K0 (A′) ≃ Z for any local rings A′, so we obtain equivalences LétZ
≃→ LétK an

0 . Noticing that

Z
≃→ LA1Z, we have shown that LétLA1Z

≃→ LétΩ∞𝜋
pre
0 K an in Shvét (RigSmK ,Condlight (Spc)).

On connected covers, for Spa(A,A◦) ∈ RigSmK with A regular and satisfying (†A), we compute as follows:

(LA1BGL) (Spa(A,A◦)) ≃ colim[n ]∈Δop BGL(Spa(A,A◦)⟨Δn⟩)
≃ colim[n ]∈Δop Hom(colim𝜌 Spa(A,A◦)

〈
Δn𝜌

〉
,BGL)

≃ colim[n ]∈Δop lim
𝜌
Hom(Spa(A,A◦)

〈
Δn𝜌

〉
,BGL)

≃ lim
𝜌
colim[n ]∈Δop Hom(Spa(A,A◦)

〈
Δn𝜌

〉
,BGL) by (4.6.4) below

≃ lim
𝜌
BGL(A

〈
Δ𝜌

〉
)

= KV an (A) cf. [37, Definition 7.1]

≃ Ω∞,pre𝜏pre≥1 K
an (A) by [37, Lemma 7.5];

here, the regularity and (†A) conditions are used only in the last isomorphism. Taking étale sheafification, by
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Temkin’s results, we obtain an equivalence in Shvét (RigSmK ,Condlight(Sp))

LétLA1BGL
≃→ LétΩ

∞,pre𝜏
pre
≥1 .

To conclude, we deduce from above that

LétLA1 (Z × BGL) ≃ (LétLA1Z) × (LétLA1BGL) ≃→ LétΩ
∞,pre𝜏

pre
≥0K

an ≃ Ω∞𝜏≥0LétK an,

where the first equivalence uses the fact that Lét and LA1 commute both with finite products. □

We have used a variant of [38, Lemma 2.8] on exchanging geometric realisations and derived limits.

4.6.4 - Lemma. Let C be a stable ∞-category equipped with a t-structure which is left complete [43, Proposition
1.2.1.17]. Let I be an ∞-category such that limI sends Fun(I ,C≤0) into C≤mI for certain mI ∈ N. Let (Xi ,•)i ∈I be a
diagram of simplicial objects in C≥0, i.e. Xi ,[n ] is connective for all i ∈ I , [n] ∈ Δ, then the limit over I commutes

with geometric realisation, i.e. ����limi ∈I Xi ,•���� ≃ lim
i ∈I

��Xi ,•��
where we denote by limi ∈I Xi ,• the levelwise limit of simplicial objects in C.

Proof. The ∞-categorical Dold-Kan correspondence for stable ∞-categories [43, Theorem 1.2.4.1] says that

Fun(N (Δ)op,C) ≃ Fun(N (N),C), and under this equivalence, a simplicial object X• is identified with the

sequence of geometric realisations of its skeleta

|sk0X• | → |sk1X• | → · · · .

Moreover, we have

|X• | ≃ lim−−→
n

|sknX• |.

Thus the equivalence stated in the lemma is equivalent to

lim−−→
n

����skn limi ∈I Xi ,•���� ≃ lim
i ∈I

lim−−→
n

��sknXi ,•��.
By left completeness (so-called "convergence of Postnikov tower"), it suffices to check isomorphisms on their

k -truncations 𝜏≤k . By (−mI )-connectivity assumption on limI and right-t -exactness of lim←−−n , it is the same as

checking 𝜋k of the n-th term with n := k +mI ; hence we are reduced to proving this equivalence after dropping

out lim−−→n
, i.e. to prove ����skn limi ∈I Xi ,•���� ≃ lim

i ∈I

��sknXi ,•��
for n = k +mI . But this follows from the commutativity between limits and finite colimits in a stable∞-category
[43, Proposition 1.1.4.1]. □

4.6.5 - Example. Here are some main cases where the connectivity condition of the lemma (4.6.4) is satisfied:

(i) The limit is a product, i.e. limI can be realised as a product
∏

J for some set J , but under the condition

the
∏

J is t -exact on C. This is the case for example where C = Cond𝜅 (Sp) and J is a 𝜅-small set. In

this case, we can choose mI = 0.

(ii) The index category I is (the nerve of) N, so that mI = 1 by vanishing of higher derived limits in degrees

> 1.

Now, we are going to relate the analytic K-theory à la Kerz-Saito-Tamme to the continuous K-theory.

Before that, let us recall the two versions of continuous K-theory and their relations.
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4.6.6. Nuclear-continuous K-theory. Recall that in Andreychev’s thesis [1], for any Tate complete Huber

ring A, he applied Efimov’s K-theory to the dualisable category Nuc(A) to define the non-connective nuclear-

continuous K-theory spectrum Knuc
cont (A), which agrees with the continuous K-theory Kcont (A) à la Morrow (defined

using integral models) thanks to Efimov’s Continuity Theorem [1, Satz 5.8] (cf. [24, Example 1.30]). Let us recall

the proof of their identification.

4.6.7 - Theorem (Efimov, Andreychev). For Tate complete Huber rings A, there is a natural isomorphism of spectra

Knuc
cont (A)

≃→ Kcont (A).

Proof. Let A0 be a ring of definition of A with a pseudouniformiser 𝜛 ∈ A0, so that A0 [ 1𝜛 ] = A. First, observe
the following diagram:

(4.6.7.1)

Tor(𝜛∞) D (A0) D (A0 [ 1𝜛 ])

Tornuc (𝜛∞) Nuc(A0) Nuc(A0 [ 1𝜛 ]).

L

L′

Here L and L′ denote the canonical localisation functors and Tor(𝜛∞) and Tornuc (𝜛∞) denote their kernels.

Then the function Tor(𝜛∞) → Tornuc (𝜛∞) is an equivalence according to [1, Satz 4.11], hence applying the

Efimov’s K-theory, we obtain a pullpack-pushout square

(4.6.7.2)

K(A0) K(A0 [ 1𝜛 ])

Knuc
cont (A0) Knuc

cont (A0 [ 1𝜛 ])

L

L′

in the stable∞-category of spectra. By Efimov’s Continuity Theorem, we have a natural isomorphism of spectra

Knuc
cont (A0)

≃→ Kcont (A0), hence as pushouts we get an isomorphism of spectra Knuc
cont (A)

≃→ Kcont (A). □

4.6.8. Condensed nuclear-continuous K-theory. It is possible to upgrade the isomorphism of spectra (4.6.7)

to an isomorphism of condensed spectra. For this, we first upgrade the concerned spectra to condensed

spectra.

On the one hand, the continuous K-theory spectrum Kcont (A0) as above underlies the condensed spectrum

Kcont (A0) := lim←−−
n

K(A0/𝜛n),

where the K-theory spectra K(A0/𝜛n) are endowed with the discrete topology; then we define the condensed

continuous K-theory spectrum Kcont (A) as the pushout

(4.6.8.1)

K(A0) K(A)

Kcont (A0) Kcont (A)

within the stable ∞-category Cond(Sp).

On the other hand, Knuc
cont (A) can be upgraded to a condensed spectrum Knuc

cont (A) as follows. Let (A,A+)
be a complete Huber pair. Recall that for any profinite set S , the object Spa(A,A+) ×S is the well-defined adic

space associated with the complete Huber pair (C (S ,A),C (S ,A+)). Consider the presheaf

Knuc
cont (A) : ProF in→ Sp

S ↦→ Knuc
cont (C (S ,A))
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It sends finite disjoint unions to products, so defines a sheaf on the site of extremally disconnected sets. We

are going to show that Knuc
cont (A) defines a sheaf on the whole site of profinite sets, and call it the condensed

nuclear-continuous K-theory spectrum of A, and globalise it to any locally Tate adic spaces.

4.6.9 - Theorem. Let A be a Tate complete Huber ring with ring of definition A0 and a pseudouniformiser 𝜛 ∈ A0.

Let (A0,I ) be an adic pair with I ⊂ A0 weakly pro-regular ideal. The presheaf Knuc
cont (A0) is a sheaf on ProF in.

More precisely, for any profinite set S and any hypercovering S• → S by extremally disconnected sets, we have a

natural isomorphism

Knuc
cont (C (S ,A0))

≃→ lim←−−
Δ

Knuc
cont (C (S•,A0)).

Proof. The ideal I = 𝜛A0 ⊂ A0 is weakly pro-regular by [1, Lemma 4.1, Lemma 3.5], so that the problem is

well-posed. Consider the Z■-solid algebra A0 = lim←−−n A0/I n . Since the natural map

colimΔop Z[S•] → Z[S ]

becomes an equivalence after Z■-solidification [12, Proposition 5.6], after taking (external) R Hom(−,A0) we
obtain a cosimplicial resolution (of rings)

C (S ,A0)
≃→ lim

Δ
C (S•,A0).

By Efimov’s Continuity Theorem, there is a natural isomorphism of spectra

Knuc
cont (C (S ,A0))

≃→ lim←−−
n

K(C (S ,A0/I n)).

We claim that

K(C (S ,A0/I n))
≃→ lim

Δ
K(C (S•,A0/I n)), n ∈ N.

Indeed, by writing the hypercovering S• → S as a cofiltered limit of hypercoverings S•,j → S j (indexed by

j ∈ J ) of finite sets by finite sets, which in particular splits, we have

K(C (S j ,A0/I n))
≃→ lim

Δ
K(C (S•,j ,A0/I n)).

Now take the filtered colimit with respect to j ∈ J op: as the algebraic K-theory K(−) commutes

with filtered colimits of rings and C (S ,A0/I n) = lim−−→ j
C (S j ,A0/I n), similarly termwisely C (S•,A0/I n) =

lim−−→ j
C (S•,j ,A0/I n), we obtain

K(C (S ,A0/I n)) ≃ lim−−→
j

K(C (S j ,A0/I n))
≃→ lim−−→

j

lim
Δ

K(C (S•,j ,A0/I n))

≃→ lim
Δ

lim−−→
j

K(C (S•,j ,A0/I n))

≃ lim
Δ

K(C (S•,A0/I n))

The second to last isomorphism can be seen by comparing the convergent spectral sequences

Ep ,q1,( j ) = 𝜋−q (K(C (Sp ,j ,A0/I n))) ⇒ 𝜋−(p+q ) (K(C (S j ,A0/I n)))

Ep ,q1 = 𝜋−q (K(C (Sp ,A0/I n))) ⇒ 𝜋−(p+q ) (K(C (S ,A0/I n))).

Indeed, 𝜋−(p+q ) commutes with filtered colimits, and

𝜋−qK(C (T ,A0/I n)) ≃ Map(T , 𝜋−qK(A0/I n)) ≃ C (T ,Z) ⊗Z 𝜋−qK(A0/I n)
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for any finite set T , so the the above spectral sequences degenerates already at the page E1 by exactness of the

complexes 0→ C (S j ,Z) → C (S1,j ,Z) → C (S2,j ,Z) → · · · for any j ∈ J . □

4.6.10 - Corollary. For any Tate complete Huber ring A, we have a natural isomorphism of spectra

Knuc
cont (C (S ,A))

≃→ lim←−−
Δ

Knuc
cont (C (S•,A0)).

In particular, Knuc
cont (A) is a sheaf on ProF in valued in spectra; in other words, Knuc

cont (A) is a condensed spectrum.

Proof. This follows from the theorem as in the proof of (4.6.7), using the diagram (4.6.7.2). □

4.6.11 - Theorem. For any Tate complete Huber ring A, there is a natural morphism of condensed spectra

Knuc
cont (A)

≃→ Kcont (A).

Proof. For any profinite set S , the topological ring C (S ,A) is still a Tate complete Huber ring, so we may apply

theorem (4.6.7) to conclude. □

We are ready to relate the analytic K-theory à la Kerz-Saito-Tamme to the nuclear-continuous K-theory.

4.6.12 - Theorem. For qcqs Z ∈ RigK , there are natural isomorphisms of condensed spectra

LA1Knuc
cont (Z )

≃→ LA1Kcont (Z )
≃→ K an (Z ).

Proof. By analytic descent, we are easily reduced to the case where Z = SpA is affinoid. Then the first

isomorphism holds by (4.6.11), even before taking A1-localisation. The second isomorphism is [22, Theorem

5.18]. □

Finally, let us come back to higher étale Chern class maps and regulators.

4.6.13. Higher syntomic and étale Chern class maps (continued). Using (4.6.3) and following the steps of

(4.5.9), for Z ∈ RigSmK , we obtain natural higher syntomic Chern class maps

(4.6.13.1) c syni ,j : K an,ét
j (Z ) → H 2i− j

syn (Z ,i ), i , j ∈ N

and natural higher étale Chern class maps

(4.6.13.2) c éti ,j : K
an,ét
j (Z ) → H 2i− j

ét (Z,Zp (i )), i , j ∈ N

in CondAb on the étale analytic K -groups of Z . They are compatible through the comparison map (4.5.7.2).

Recall that we have maps in ShvNis (RigSmK ,Condlight(Sp))

k an,mot = Lmot (Z × BGL) → Lét (Z × BGL) ≃ K an,ét ← K an ← Knuc
cont.

Therefore, these newly defined higher Chern class maps refine (4.5.9.2) and (4.5.9.3), and induces higher Chern

class maps on the analytic K -groups K an
j (Z ), j ∈ N, in so particular on the nuclear-continuous K -groups.

4.6.14. Higher étale regulators (continued). For Z ∈ RigSmK and i , j ∈ N, let c̄ éti ,j : K an,ét
j (Z ) →

H 0 (GK ,H 2i− j
ét (ZC ,Zp (i ))) be the map induced by the higher étale Chern class map c éti ,j (4.6.13.2) and the

Hochschild-Serre spectral sequence boundary map 𝛿0 : H 2i− j
ét (ZC ,Zp (i )) → H 0 (GK ,H 2i− j

ét (ZC ,Zp (i ))). We

define

(4.6.14.1) K an,ét
j (Z )0 := ker(K an,ét

j (Z )
c̄ éti ,j→ H 0 (GK ,H 2i− j

ét (ZC ,Zp (i ))))
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and the higher étale regulator map

(4.6.14.2) r éti ,j : K
an,ét
j (Z ) → H 1 (GK ,H 2i− j−1

ét (ZC ,Zp (i )))

induced from c éti ,j |K an,ét
j (Z )0 and the Hochschild-Serre spectral sequence map

𝛿1 : H
2i− j
ét (ZC ,Zp (i ))0 := ker 𝛿0 → H 1 (GK ,H 2i− j−1

ét (ZC ,Zp (i ))).

This newly defined higher étale regulator map r éti ,j refines that of (4.5.10.2), and induces higher étale regulator

map on K an
0 (Z )0. We shall use the same notation for the rational coefficients Qp (i ).

4.6.15 - Theorem. Let Z ∈ RigSmK be proper. The étale regulator map r éti ,j (4.6.14.2) factors through the condensed

subgroup

H 1
st (GK ,H

2i− j−1
ét (ZC ,Qp (i ))) ⊂ H 1 (GK ,H 2i− j−1

ét (ZC ,Qp (i ))).

Proof. The proof goes verbatim as that of (4.5.11). □

4.6.16 - Remark. Since the syntomic cohomology and (pro)étale cohomology satisfy even éh-descent in RigK ,

one may replace the site RigSmK ,ét by RigK ,éh thanks to Haoyang Guo’s description of local nature of the

éh-topology, so as to extend the above theorem to the case of (possibly singular) proper Z ∈ RigK .
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