
DESCENT OF PSEUDOCOHERENT AND PERFECT COMPLEXES ON
SHEAFY AND LOCALLY TATE ADIC SPACES

YICHENG ZHOU

Abstract. These are the notes for my talk on Andreychev’s master thesis [And21] on
descent theorem for several categories of (quasi)coherent modules on sheafy and locally
Tate adic spaces, on 30th October 2024 (part 1). If time permits (though actually not), I
will present a little bit of his nuclear-continuous K-theory for sheafy and locally Tate adic
spaces [And23] (part 2).

Contents

Part 1. Talk on 30th October 2024 2
1. Descent theorems 2
1.1. Algebraic case 2
1.2. Analytic geometry, I: Huber pairs 5
1.3. Analytic geometry, II: affinoid adic spaces 8
1.4. Analytic case 13
2. “Quasi-coherent modules” on affinoid adic spaces, following Clausen-Scholze 16
2.1. Condensed mathematics 16
2.2. Solid abelian groups 19
2.3. Analytic rings 21
2.4. Pushout and steadiness 26
3. Analytic descent of “quasi-coherent modules” on sheafy locally Tate adic spaces 29
3.1. Comparison with the proof in algebraic case 29
3.2. Laurent coverings 31
3.3. Discrete Huber pairs 31
3.4. Proof of analytic descent of “quasi-coherent modules” 32
4. Cut out some descendable full subcategory of “quasi-coherent modules” 32

Date: 7 November 2024.
1



2 YICHENG ZHOU

4.1. Dualisable objects 33
4.2. (Pseudo)compact objects 33
4.3. Nuclear objects 34
4.4. Proof of analytic descent of D((A, A+)■)dual 36
5. Final touch: get discreteness 38
5.1. Discrete modules 38
5.2. Get discreteness from descendable properties 39
5.3. Proof of analytic descent of Perf(A) and PCohA 41

Part 2. Complements 42
6. Analytic K-theory 42
6.1. From algebraic to analytic K-theory 42
6.2. Issues explained 44
6.3. Dualisable ∞-categories 45
6.4. Nuclear-continuous K-theory 46
6.5. Continuous K-theory 47
6.6. Condensed nuclear-continuous K-theory 49
References 52

Part 1. Talk on 30th October 2024

1. Descent theorems

1.1. Algebraic case. Let us recall the descent of certain quasi-coherent modules in the
algebraic case, by which I mean for schemes.

1.1.1. For any (ordinary) ring A, we denote by D(A) the (unbounded) derived ∞-category of
A-modules (whose homotopy category is the usual derived category D(A) of A-modules).

Recall that, while the (Čech) descent of abelian categories can be formulated in terms of
presheaves with values in Cat(2,1), the (2, 1)-category of (1-)categories (where 2-morphisms only
take account of the natural transformations that are natural equivalences), the descent of derived
categories however should be formulated in terms of higher categories, so that we need the ∞-
categorical enhancement D(A) of D(A). Whence, we will put ourselves into the framework of
(pre)sheaves with values in Cat∞, the ∞-category of ∞-categories.
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1.1.2. Definition (Pseudocoherent and perfect complexes). Let A be an (ordinary) ring and
M ∈ D(A).

(i) We say that M is a pseudocoherent complex if there is a quasi-isomorphism

M ≃ (· · · → Pn−2 → Pn−1 → Pn → 0)

where all Pi’s are finite projective A-modules (or equivalently, all Pi’s are compact
projective objects in the heart D(A)♡ ≃ ModA). We denote by

PCohA ⊂ D(A)

the full subcategory of pseudocoherent complexes; more particularly, if the above
resolution of M exists, we say M has tor-amplitude ≤ n, and denote by

PCoh≤n
A ⊂ D(A)

the full ∞-subcategory of such complexes.
(ii) We say that M is a perfect complex if there is a quasi-isomorphism

M ≃ (0→ Pa → · · · → Pb → 0)

where all Pi’s are finite projective A-modules. We denote by

Perf(A) ⊂ D(A)

the full∞-subcategory of perfect complexes; more particularly, if the above resolution
of M exists, we say M has tor-amplitude in [a, b], and denote by

Perf [a,b](A) ⊂ D(A)

the full ∞-subcategory of such complexes.

1.1.3. Remark. Let A be an (ordinary) ring. The tor-amplitude information of a complex in D(A)
is related to its concentration degrees, and to the existence of its resolution with terms chosen from
any given family of compact projective generators of ModA (e.g. P is set to be the set of all finite
free A-modules).

(i) We have
PCoh≤n

A = PCohA ∩D≤n(A) ⊂ D(A).

And any M ∈ PCoh≤n
A admits a resolution as above but with Pi’s chosen from any given

family P.
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(ii) We have
Perf [a,b](A) ⊂ Perf(A) ∩D [a,b](A),

but in general this is not an equality; for example, in D(Z), the complex Z/2 ≃ (Z 2·→ Z) ∈
D(Z) has tor-amplitude in [−1, 0] but not in [0, 0], even though Z/2 is concentrated in
degree 0. Moreover, not all M ∈ Perf [a,b](A) admit a resolution as above with Pi’s chosen
from a given family P of compact projective generators; for example, Z/2 ∈ D(Z/6) is
finite projective, so belongs to Perf [0,0](Z/6), but it is not quasi-isomorphic to any complex
P [0] with P being a finite free Z/6-module; even worse, Z/2 does not admit any finite
resolution with terms being finite free Z/6-modules.

1.1.4. Theorem. The presheaves on affine schemes with values in Cat∞

U = Spec A 7→ PCohA, PCoh≤n
A , Perf(A), Perf [a,b](A)

all satisfy fpqc (hyper)descent. In particular, these extend respectively to associated sheaves
of ∞-categories on all schemes.

Very brief sketch of idea of the proof. The proof can be divided into two steps:
(i) The first step is to prove the descent of the much more general derived category

D(A).

Theorem (Lurie). The presheaf on affine schemes with values in Cat∞

U = Spec A 7→ D(A)

satisfies fpqc (hyper)descent.

In particular, at the abelian level, one recovers the classical descent of quasi-
coherent modules:

Theorem (Grothendieck). The presheaf on affine schemes with values in Cat(2,1)

U = Spec A 7→ QCoh(U) = ModA

satisfies fpqc descent.

(ii) The second step is then to prove that the conditions cutting out the desired full
subcategories are descendable, i.e. they can localise and can be checked locally.

□
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1.1.5. Definition. Let A be an (ordinary) ring. We denote by

PCoh0
A := PCohA ∩ModA ⊂ ModA

the full subcategory of pseudocoherent A-modules, and denote by

FinProjA ≃ Perf [0,0](A) ⊂ Perf(A) ∩ModA ⊂ ModA

the full subcategory of finite projective A-modules.

1.1.6. Corollary. The presheaves on affine schemes with values in Cat(2,1)

U = Spec A 7→ PCoh0
A, FinProjA

all satisfy fpqc descent.

1.1.7. Corollary. For any (ordinary) ring A, the functor

FinProjA → VB(Spec A), M → M̃

is an equivalence of categories, with one quasi-inverse given by the functor taking global
sections Γ(Spec A,−).

Here, for any scheme X, we denote by VB(X) the category of vector bundles over X.

1.1.8. Application: Nisnevich descent of the non-connective K-theory. The non-connective
K-theory functor K(−) : Catidem

st → Sp being a localising invariant (i.e. sending Verdier sequences
to fiber sequences) and Perf(−) satisfying fpqc whence a fortiori Nisnevich descent and verifying
an open-closed excision Verdier sequence, the functor K(Perf(−)) satisfies Nisnevich descent on
schemes.

1.2. Analytic geometry, I: Huber pairs.

1.2.1. Basic geometric objects: overview. In analytic geometry, one considers analytic func-
tions (i.e. those that can be expressed by a formal power series) that are well-defined over a
domain (i.e. convergence of formal power series). There are several ways to make sense of it in the
nonarchimedean world.

(i) Let K be a nonarchimedean field which we assume, for simplicity, to be non-trivially valued.
Tate started the rigid-analytic geometry by requiring the ring of functions O(B1

K) of the
closed unit ball over K to be the ring K⟨T ⟩ consisting of convergent power series, i.e. formal
power series

∑
i∈N aiT

i with coefficients ai ∈ K converging to 0. This ring is (strongly)
Noetherian, and it is naturally equipped with the topology induced from that of K. The
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corresponding geometric object B1
K (in parallel with schemes) is the maximal spectrum

of K⟨T ⟩ with certain so-called G-topology where coverings are admissible coverings. In
general, we consider the K-affinoid algebras, which are nonzero quotients of K⟨T1, . . . , Tn⟩,
and the associated geometric object is the maximal spectrum Sp A with the G-topology.

(ii) This maximal spectrum Sp A is missing points, just as maximal spectrum of an algebra miss
points corresponding to prime ideals that are not maximal. To have better understanding
of the geometry of Sp A, one needs to pass to finer spectra. There are two mainstreams:
Berkovich spaces and Huber’s adic spaces.

(iii) Berkovich came up with the idea that one should look at (rank 1) valuations on residue
fields at points of the prime spectrum to fill up the missing points. It turns out that the
points are well filled up, so that we obtain the Berkovich spectrumM(A), which, equipped
with again certain G-topology, is a compact Hausdorff topological space.

(iv) However, on Berkovich spaces, the coverings are still admissible coverings, but not all open
coverings, which remains an unsatisfying flaw. For example, on the rigid-analytic unit
disk as well as the Berkovich closed unit disk B1

K = Sp K⟨T ⟩, the family of rational open
immersions ∐

n≥1
{|T | ≤ |π|1/pn

}

⨿ {|T | = 1} → B1
K

is jointly surjective but is not an admissible covering. To remedy the non-admissibility, one
may take Huber’s point of view, to see that there exists a rank 2 valuation η− on K⟨T ⟩
such that |T |η− < 1 but |T |η− ≥ |π|1/pn

for any n ≥ 1, so that this rank 2 point is in fact
missed by the above open coverings. More concreteley, such |·|η− takes values in the totally
ordered abelian group

Γ = (R>0,×)× (R>0,×)
with the alphabetical order

(a, b) ≤ (a′, b′) def⇔ (a < a′) ∨ (a = a′ ∧ b ≤ b′),

and can be represented by

|·|η− : K⟨T ⟩ → Γ ∪ {0}, a 7→ (|a|K , 1), T 7→ (1,
1
2).

(v) By adding higher rank valuations to the Berkovich spectrum, Huber succeeded in defining
the adic spectrum Spa(A, A◦) in place of Sp A or M(A), whose coverings are simply given
by open coverings (which can in turn be refined by rational open coverings). Although
Spa(A, A◦) is not Hausdorff any more, but it is a spectral space and the good properties
of open coverings will allow us to employ very algebraic methods to study the analytic
geometry, just as we can use algebraic methods to study algebraic geometry/schemes.
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We will use the language of Huber’s adic spaces. This notion generalises to a much bigger
class of objects than K-affinoid algebras. Let us introduce them now.

1.2.2. Definition. A (complete) Huber ring is a topological ring A such that, there exists
an open subring A0 and a finitely generated ideal I of A0 such that the induced topology on
A0 is the I-adic topology (and A0 is I-adically complete).

We call such subring A0 ⊂ A a subring of definition and I ⊂ A0 an ideal of definition,
and we call the pair (A0, I) a pair of definition of A.

1.2.3. Given a Huber ring A, there are
(i) a notion of power bounded elements; we denote by A◦ the subset (in fact an open

subring) of all power bounded elements of A;
(ii) a notion of topologically unipotent elements, and we denote by A◦◦ the subset (in fact

an open ideal of A◦) of all topologically unipotent elements of A.

1.2.4. Example. Any ordinary ring R with discrete topology is a Huber ring, with a pair of
definition (R, 0). We have R◦ = R and R◦◦ = 0.

1.2.5. Example. Let K be a (non-trivially valued) nonarchimedean field with a pseudouni-
formiser π ∈ K× ∩ mK = mK\{0}. Then any K-affinoid algebra A is a Huber ring. If we
write A = K⟨T1, . . . , Tn⟩ /I, then the image of the pair (OK⟨T1, . . . , Tn⟩ , (π)) is a pair of
definition of A. We have

K⟨T1, . . . , Tn⟩◦ = OK⟨T1, . . . , Tn⟩ , K⟨T1, . . . , Tn⟩◦◦ = mK⟨T1, . . . , Tn⟩ .

The Huber ring A itself is not enough for constructing adic spaces, we need some auxiliary
data A+ to specify a “reference of boundedness”, i.e. with respect to which “lattice” of A

we want to talk about boundedness. It will be an analogue of Zp-lattices in a Qp-Banach
spaces.

1.2.6. Definition. A (complete) Huber pair (A, A+) consists of a (complete) Huber ring A

and an integrally closed open subring A+ ⊂ A◦.

1.2.7. Example. Examples of complete Huber pairs:
(i) discrete Huber pairs (R, R+), where R is an ordinary ring with discrete topology and

R+ ⊂ R is any integrally closed subring of R+; for example, (Z[T ], Z), (Z[T ], Z[T ]),
(Z[T ±1], Z[T −1]);
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(ii) (K⟨T1, . . . , Tn⟩ ,OK⟨T1, . . . , Tn⟩);
(iii) (K

〈
T

1/p∞

1 , . . . , T 1/p∞
n

〉
,OK

〈
T

1/p∞

1 , . . . , T 1/p∞
n

〉
), which is non-Noetherian;

The “integrally closed” assumption is not so essential. One may also take a subset
S ⊂ A◦ to form a pair (A, S), then the theory of adic spaces as well as analytic rings that
we will introduce does not distinguish (A, S) from (A, S ∪ A◦◦) where S ∪ A◦◦ is the integral
closure of the subring generated by S ∪ A◦◦, or equivalently the smallest integrally closed
open subring generated by S. For this reason, we may write in the second argument of a
Huber pair a subset that is not integrally closed (even nor a subring), and call such (A, S)
a pre-Huber pair.

1.2.8. Example. Examples of pre-Huber pairs:
(i) (R, Z), where R is an ordinary ring with discrete topology;
(ii) (K⟨T1, . . . , Tn⟩ ,OK), whose associated Huber pair is (K⟨T1, . . . , Tn⟩ ,OK+mK⟨T1, . . . , Tn⟩)

1.3. Analytic geometry, II: affinoid adic spaces. Next, we are going to explain the
notion of sheafy and locally Tate Huber pairs. In order to make sense of it, firstly we need
some knowledge of geometric objects attached to Huber pairs, which are affinoid adic spaces.

1.3.1. Definition. Let (A, A+) be a Huber pair. The adic spectrum of it or affinoid adic
space attached to it is the set of valuations satisfying two conditions:

Spa(A, A+) :=
{
|·|v : A→ Γv ∩ {0}

∣∣∣ |A◦◦|v < 1,
∣∣∣A+

∣∣∣
v
≤ 1

}
/≃

.

Here, a valuation |·|v satisfies the first condition (or equivalently |I|v < 1) if and only
if it is continuous with respect to the topology of A and the order topology (by requiring
{a ∈ Γ | a < γ} and {a ∈ Γ | a > γ} to be open for all γ ∈ Γ, or equivalently, if Γ ̸= {1}
is not the trivial group, requiring {a ∈ Γ | a ≤ γ} to be open and closed for all γ ∈ Γ),
in which case we call |·|v a continuous valuation. This first condition does not concern the
“reference of boundedness” datum A+.

The second condition, however, is where this datum A+ speaks. It picks out the valuations
that are bounded on what should be bounded, i.e. bounded on A+. Admitting the first
condition, it is easy to see that the condition |S|v ≤ 1 is insensitive to two operations:
taking the subring generated by S ∪ A◦, and taking the integral closure of S; this reflects
our saying that (A, S) and (A, S ∪ A◦◦) are undistinguishable (in geometry).

Two valuations on A are said to be equivalent if they induce the same partial order
relation on A.
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1.3.2. Remark. There is a map

Spa(A, A+)→ Spec A, |·|v 7→ ker(|·|v) = {f ∈ A | |f |v = 0}.

The fibre over a point p ∈ Spec A consists of valuations (of any rank) on the residue field
κ(p) such that the image of A+ has valuations ≤ 1. However, certain fibres may be empty.

1.3.3. Definition. Let (A, A+) be a Huber pair. We define the analytic topology on Spa(A, A+)
as the coarsest topology such that the map

evf : Spa(A, A+)→
∏

v∈Spa(A,A+)
(Γv ∪ {0}), v 7→ |f |v

is continuous for any f ∈ A, where we put the product topology of valuation topologies on
the right hand side.

The topology on affine schemes has a basis given by principal open subsets. Similarly,
the topology on affinoid adic spaces has a basis given by rational open subsets.

1.3.4. Definition. Let (A, A+) be a Huber pair. A rational open subsets of Spa(A, A+) is a
subset of the form

Spa(A, A+)
(

f1, . . . , fn

g

)
=
{
|·|v ∈ Spa(A, A+)

∣∣∣ |fi|v ≤ |g|v ̸= 0, ∀i = 1, . . . , n
}

where f1, . . . , fn, g generate an open ideal of A.

It easy to see from definition of the analytic topology on affinoid adic spaces that the
rational open subsets form a basis (the key point being that any finite intersection of rational
open subsets is still a rational open subset), and that they are an analogue of principal open
subsets of affine schemes.

1.3.5. Remark. Recall that a principal open subset D(f) of an affine scheme Spec R is
obtained by requiring f to be non-vanishing. Similarly, a rational open subset is cut out by
two steps:

(i) requiring g to be non-vanishing,
(ii) then requiring the elements f1

g
, . . . , fn

g
to have valuation ≤ 1.

And on the level of Huber pairs (A, A+), this translates to:
(i) Inverting g in the first argument A, to get A[ 1

g
];

(ii) Adjoining f1
g

, . . . , fn

g
to the second argument A+, to get A+[ f1

g
, . . . , fn

g
].
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This will be the intuitive slogan of the localisation of Huber pairs.

One instance of this slogan is illustrated by the following proposition:

1.3.6. Proposition. Let (A, A+) be a Huber pair and U ⊂ Spa(A, A+) be a rational open
subset defined by f1, . . . , fn, g (generating an open ideal of A). There exists a universal
Huber pair (AU , A+

U) initial among all maps of Huber pairs f ♯ : (A, A+) → (B, B+) such
that the induced map (of topological spaces) Spa(B, B+) → Spa(A, A+) factors through the
subset U . More concretely, (AU , A+

U) can be described as the completion of the Huber pair
(A[ 1

g
], A+[ f1

g
, . . . , fn

g
]).

Here, the completion of the Huber pair (B, B+) := (A[ 1
g
], A+[ f1

g
, . . . , fn

g
]) goes as follows:

given any pair of definition (A0, I) of A, we
(i) form the pair of definition (A0[ f1

g
, . . . , fn

g
], IA0[ f1

g
, . . . , fn

g
]) of (B, B+),

(ii) then I-adically complete it,
(iii) then tensor it by −⊗

A0[ f1
g

,..., fn
g

] B to get B̂,
(iv) then take the closure of the image of B+ in B̂,

to finally get the completion

(AU , A+
U) = (B̂, B̂+) =:

(
A

〈
1
g

〉
, A+

〈
f1

g
, . . . ,

fn

g

〉)
.

By universality of (AU , A+
U), the resulting complete Huber pair (A

〈
1
g

〉
, A+

〈
f1
g

, . . . , fn

g

〉
)

does not depend on the choice of f1, . . . , fn, g (generating an open ideal of A) that defines
the rational subset U .

1.3.7. Proposition. Let (A, A+) be a Huber pair and U ⊂ Spa(A, A+) be a rational open
subset. Then the map (A, A+)→ (AU , A+

U) induces a homeomorphism

Spa(AU , A+
U) ≃→ U.

Therefore, we can say that (A, A+) → (AU , A+
U) is a rational localisation. Moreover,

if {Ui}i is a rational open covering of Spa(A, A+), i.e. an open covering by rational open
subsets, then we say that {(AUi

, A+
Ui

)}i is a rational open covering of the Huber pair (A, A+).

1.3.8. Example. Consider the discrete Huber pair (Z[T ], Z). We have a rational open
covering

(1.3.8.1) Spa(Z[T ], Z[T ])⨿ Spa(Z[T ±1], Z[T −1])→ Spa(Z[T ], Z).
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We have the following intuitive interpretation of this covering:
(i) Spa(Z[T ], Z) = A1

Z is the adic affine line over Z.
(ii) Spa(Z[T ], Z[T ]) = {|T | ≤ 1} = B1

Z is the adic closed unit disk over Z, which is a
rational open subset.

(iii) Spa(Z[T ±1], Z[T −1]) = {|T | ≥ 1} = ι(B1
Z\{0}) is the adic punctured closed unit disk

over Z centered at∞ (where ι denotes the usual involution T 7→ T −1 of the projective
line), which is also a rational open subset.

1.3.9. Example. Let K be a (non-discretely valued) non archimedean field. Consider the dis-
crete pre-Huber pair (K⟨T ⟩ ,OK), with associated discrete Huber pair (K⟨T ⟩ ,OK +mK⟨T ⟩).
It fits into the base change diagram

Spa(K⟨T ⟩ ,OK) Spa(Z[T ], Z)

Spa(K,OK) Spa(Z, Z)

We have a rational open covering

Spa(K⟨T ⟩ ,OK⟨T ⟩)⨿ Spa(K
〈
T ±1

〉
,OK

〈
T −1

〉
)→ Spa(K⟨T ⟩ ,OK),

or in terms of Huber pairs

Spa(K⟨T ⟩ ,OK⟨T ⟩)⨿ Spa(K
〈
T ±1

〉
,OK

〈
T −1

〉
+ mK⟨T ⟩)→ Spa(K⟨T ⟩ ,OK + mK⟨T ⟩).

We have the following intuitive interpretation of this covering:
(i) Spa(K⟨T ⟩ ,OK) = B1

K is the adic compactified closed unit disc over K.
(ii) Spa(K⟨T ⟩ ,OK⟨T ⟩) = {|T | ≤ 1} = B1

K is the adic closed unit disk over K, which is
a rational open subset.

(iii) Spa(K⟨T ±1⟩ ,OK⟨T −1⟩) = {|T | ≥ 1} = B1
K ∩ ι(B1

K) is the adic outerly-compactified
torus over K (where ι denotes the usual involution T 7→ T −1 of the projective line),
which is also a rational open subset.

1.3.10. Example. Let (A, A+) be a Huber pair and f ∈ A. Let us now consider the map

(Z[T ], Z)→ (A, A+), T 7→ f,

along which the rational open covering (1.3.8.1) is base changed to the rational open covering

{|f | ≤ 1} ∪ {|f | ≥ 1},
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or in terms of pre-Huber pairs

Spa(A⟨f⟩ , A+⟨f⟩)⨿ Spa(A
〈

1
f

〉
, A+

〈
1
f

〉
)→ Spa(A, A+).

Now it is time to explain the term locally Tate.

1.3.11. Definition (Locally Tate Huber pairs). Let (A, A+) be a (complete) Huber pair.
(i) The Huber ring A or the Huber pair (A, A+) is called Tate if A admits a topologically

nilpotent unit, i.e. if there exists an element ϖ ∈ A◦◦ ∩ A×.
(ii) (A, A+) is called locally Tate (or analytic following Kedlaya’s naming) if it becomes

Tate after passing to a rational open covering, i.e. it admits a rational open covering
{(Ai, A+

i )}i with all (Ai, A+
i )’s being Tate.

1.3.12. Remark (Kedlaya, [Ked17, Lemma 1.1.3]). A (complete) Huber pair (A, A+) is
locally Tate if and only if A◦◦ generates the unit ideal of A. So this notion depends only on
A.

1.3.13. Example. The following Huber rings are Tate:
(i) Any K-affinoid algebra with K non-trivially valued nonarchimedean field;
(ii) Any perfectoid ring;
(iii) The ring of continuous functions C(S, A) where S is a profinite set and A is a Tate

Huber ring.

Next, we explain the term sheafy.

1.3.14. Definition (Sheafy Huber pairs). Let (A, A+) be a Huber pair and X := Spa(A, A+)
be the associated affinoid adic space.

(i) We define the structural presheaf on X by sending any open subset U ⊂ X to

OX(U) = lim←−
V ⊂U

AV .

where V runs through all rational open subsets of X contained in U .
(ii) We say that (A, A+) is sheafy if OX is a sheaf (of sets/rings) for the analytic topology

on X.

1.3.15. Remark (Kedlaya, [Ked17, Remark 1.6.9]). Whether a locally Tate (complete) Huber
pair (A, A+) is sheafy depends only on A.
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1.3.16. Example. Although exotic non-sheafy examples exist, in practice, every Huber pair
that we will encounter is sheafy:

(i) If R is discrete, then (R, R+) is sheafy.
(ii) If A is Tate and strongly Noetherian (e.g. a K-affinoid algebra with K non-trivially

valued nonarchimedean field), then (A, A+) is sheafy.
(iii) If A is a sousperfectoid ring (i.e. there exists a continuous A-linear morphism from A

to a (rational) perfectoid ring B that splits in the category of topological A-modules),
then (A, A+) is sheafy, and more generally (C(S, A), C(S, A+)) is sheafy.

1.4. Analytic case.

1.4.1. Theorem. Let (A, A+) be a sheafy complete Huber pair. Then the presheaves on
rational open subsets of Spa(A, A+) with values in Cat∞

U 7→ PCohAU
, PCoh≤n

AU
, Perf(AU), Perf [a,b](AU)

all satisfy analytic descent.

1.4.2. Remark. In the original article, there is a “locally Tate” assumption. But it turns out
to be unnecessary except for the descent of stably uniform pseudocoherent modules PCoh0

A,
see the remark (3.0.2).

1.4.3. Corollary. For any sheafy complete Huber pair (A, A+), the functor

FinProjA → VBan(Spa(A, A+)), M 7→ (M̃ : U 7→M ⊗A AU)

is an equivalence of categories, with one quasi-inverse given by the functor taking global
sections Γ(Spa(A, A+),−).

1.4.4. Remark. The étale site over a sheafy adic space, e.g. for simplicity Spa(A, A+), is generated
by rational open coverings of (A, A+) and finite étale coverings of A. For a finite étale covering
A→ B, we have

Perf(B) = ModB(Perf(A)),

so Perf(−) satisfies finite étale descent. Altogether, Perf(−) satisfies étale descent, suggesting that
K(Perf(−)) satisfies étale descent on Spa(A, A+). However, the thus defined K-theory does not
admit an open-closed (excision) fiber sequence. From this perspective, the better substitute for
Perf(−) would be the Nuc(−) that we will encounter later during the proof.

We will define Nuc(−) in the future, but let us record the following properties of it:
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(i) Let A be a complete Huber ring, then Nuc((A, A+)■) is independent of A+. We denote it
by Nuc(A). It is a dualisable category, or equivalently, a dualisable object in PrL

st.
(ii) Let A, B be Tate Huber rings, and A→ B a finite étale map. Then we have

Nuc(B) ≃ ModB(Nuc(A)) ≃ Nuc(A)⊗CondA,Perf(A) Perf(B) ≃ Nuc(A)⊗CondA,D(A) D(B).

By [Mat16, Corollary 3.42], the natural map Nuc(A)→ lim←−n∈∆ Nuc(B⊗A(n+1)) is an equiva-
lence in Cat∞ (or equivalently in PrL

st, since the faithful embedding PrL ↪→ Cat∞ preserves
limits by [Lur09, Proposition 5.5.3.13]).

(iii) The étale topology on an adic space is generated by the analytic topology and finite étale
maps. Hence, we obtain a sheaf Nuc(−) satisfying étale descent on sheafy and locally Tate
adic spaces. It also satisfies excision as promised.

(iv) An appropriate K-theory machine Kcont : Prdual
st → Sp, which is required to be a localising

invariant, will produce a nuclear-continuous K-theory Knuc(−) := Kcont(Nuc(−)) satisfy-
ing Nisnevich descent. The subtlety in the definition of Kcont(−) will be addressed in the
supplementary subsection 6.2.

1.4.5. State of art. Let us review related previous results on descent of Perf(A) and PCohA

in analytic geometry.
(i) Flat descent of CohA for K-affinoid algebras was proved by Bosch-Görtz-Gabber.
(ii) Descent of FinProjA was proved by Kedlaya-Liu in the (sheafy and) Tate case and

later generalised by Kedlaya in the (sheafy and) locally Tate case. Their method is
quite direct, involving properties of topological modules.

(iii) Let π ∈ K be a (nonzero) pseudouniformiser. Let Alg♭
OK

denote the category of
OK-algebras that are π-torsion-free and π-adically complete. Drinfeld proved the
π-completely faithfully flat descent of VB(R[ 1

π
]) for R ∈ Alg♭

OK
. Akhil Mathew

generalised this to PCoh(≤n)
R[ 1

π
] and Perf([a,b])(R[ 1

π
]) [Mat22].

(iv) In the same article, Akhil Mathew proved flat hyperdescent of PCoh(≤n)
A and Perf([a,b])(A)

for K-affinoid algebras. The key is that the faithfully flatness of a map between such
objects A→ A′ implies universal descendability of maps of integral models in Alg♭

OK

(see [Mat22, Proposition 6.14]).

1.4.6. Difficulties. Compared with the proof in the algebraic case, the difficulty is to
find suitable replacement of the category D(A) of “quasi-coherent complexes” in analytic
geometry. Since the rational localisation involves completion process and is thus finer that
Zariski localisation, one must consider certain category of topological A-modules to capture
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the information lost in this process in order to get descent (in fact, D(A) does not satisfy
analytic descent on Spa(A, A+)).

However, the naive choice of topological A-modules will not work, since they do not
even form an abelian category (for example, consider the map ⊕̂

NQp →
⊕̂

NQp given by
multiplcation by n on the n-th factor, its image and coimage do not coincide). Even worse,
there is no canonical (complete) topological A-module structure on finitely presented A-
modules when A is non-Noetherian1.

Lemma. There exist a (commutative unital) ring R and two elements x, t ∈ R, such that
(i) R is x-adically complete;

(ii) R/t is not x-adically complete.

Proof. See the discussion in [Sta18, Section 05JD]. To recall the construction there, let

R = k[t, z1, z2, z3, . . . , w1, w2, w3, . . . , x]/(zit− xiwi, ziwj)

with x and t be the evident elements of R. Indeed, the element

f =
∞∑

i=1
wix

i

belongs to the ideal (t, xn) because xmwm ∈ (t) for all m; but one can show that f ̸∈ (t). In fact,
we show this as follows.

If f = tg, then g has the (unique) expansion g =
∑

i=l glx
l with gl ∈ k[t, zl, wl] and gl not

involving tzl or zlwl. Since tzizj = 0 we may as well assume that none of the gl have terms involving
the products zizj . Examining the process to get tg in canonical form we see the following: Given
any term cm of gl where c ∈ k and m is a monomial in t, zi, wj and we make the following
replacement

• if the monomial m does not involve any zi, then ctm is a term of fl, and
• if the monomial m does involve a zi then it is equal to m = zi and we see that cwi is term

of fl+i.
Since g0 is a polynomial only finitely many of the variables zi occur in it. Pick n such that zn does
not occur in g0. Then the rules above show that wn does not occur in fn which is a contradiction.
It follows that R∧/(t) is not complete, see [Sta18, Lemma 031A]. □

1We know that for a Noetherian ring R complete with respect to an ideal I (which is necessarily finitely
generated), all the finitely generated R-modules (which are automatically finitely presented) are I-adically
complete; so it makes sense to consider the (abelian) category of finite generated R-modules that are I-
adically complete.

https://stacks.math.columbia.edu/tag/05JD
https://stacks.math.columbia.edu/tag/031A
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Facing these difficulties, Akhil Mathew’s trick is to consider, for A = R[ 1
π
] with R ∈

Alg♭
OK

, certain categoryM(A) between the desired category for descent and the usual D(A):

PCohA ↪→M(A)→ D(A),

where M(A) is roughly speaking the left-completed π-isogeny category of bounded above
derived π-complete complexes in D(R), such that:

• The first arrow is fully faithful embedding;
• The second arrow is t-exact, conservative;
• M(R[ 1

π
]) satisfies π-completely faithfully flat descent on Alg♭

OK
(by monadicity the-

orem of Barr-Beck-Lurie).
Despite the capacity of proving strong flat descent results, his approach has a drawback that
the intermediate descendable category M(A) is not closed under taking colimits (even the
simplest countable direct sums), which should be a crucial property of the candidate of the
category of “(topological) quasi-coherent complexes” over (A, A+).

Nevertheless, one should remark that the use of derived π-completeness suggests an
algebraic way of defining topological module structures.

We will introduce a precise analogue of “quasi-coherent complexes” over (A, A+) in the
next section, using Clausen-Scholze’s notion of analytic rings.

2. “Quasi-coherent modules” on affinoid adic spaces, following
Clausen-Scholze

Our candidate for the ∞-category of “quasi-coherent modules” over an affinoid adic
space Spa(A, A+) will be the full subcategory D((A, A+)■) ⊂ D(A) consisting of (A, A+)■-
modules. This section is devoted to explaining what these modules are.

2.1. Condensed mathematics. For a topological ring A, the category of usual topological
modules is often pathological: coimage and image may not coincide. But our belief is that
one should be to do homological algebra of topological modules! Indeed, it is plausible to do
so with condensed modules (in the language of condensed mathematics).

2.1.1. Definition. Let ProF in be the category of profinite sets with finitary topology, and
EDS be its subcategory of extremally disconnected sets (i.e. any surjective map from a
profinite set to it splits).
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2.1.2. Definition. The terminology condensed will refer to looking at sheaves on the site
ProF in or EDS. (The idea is that the condensed structure records the topological informa-
tion on algebraic objects by testing with continuous functions from profinite sets.)

(i) We define the category of condensed sets as

Cond(Set) := Shv(ProF in,Set) ≃ Shv(EDS,Set).

(ii) We define the category of condensed abelian groups

Cond(Ab) := Shv(ProF in,Ab) ≃ Shv(EDS,Ab),

which is also the category of abelian group objects among condensed sets.
(iii) Similarly, we have the notion of condensed monoids/groups/rings, etc.
(iv) Let A be a topological space, we define its associated condensed set as

A : ProF inop → Set, S 7→ C(S, A),

where C(S,−) denotes the set of continuous functions from S to a topological space.
If A is a topological group/abelian group/monoid/rings, etc., then so is A.

(v) Let A be a topological ring, we define the category of condensed A-modules as the
category of A-module objects among condensed sets

ModA := ModA(Cond(Set)) = ModA(Cond(Ab)).

In particular, we have Cond(Ab) = ModZ.
We record the following theorem on the structure of C(S, Z) for future reference:

2.1.3. Theorem (Specker, Nöbeling). For any profinite set S, the abelian group C(S, Z) is
a free abelian group.

2.1.4. Notation. For any profinite set S, we will often denote by I a set such that C(S, Z) ≃⊕
I Z. Note that the choice of I is not canonical but this non-canonicality will be of little

importance.

Condensed modules have really nice homological algebraic behaviours:

2.1.5. Proposition. Let A be a topological ring A.
(i) The category ModA is a Grothendieck abelian category, satisfying the axioms:

• (AB3) All colimits exist;
• (AB3*) All limits exist;
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• (AB4) All direct sums are exact;
• (AB4*) All products are exact;
• (AB5) All filtered colimits are exact;
• (AB6) For any index set J and filtered categories Ij, j ∈ J with functors

Ij → ModA, i 7→Mi,

the natural map

lim−→
(ij∈Ij)j

∏
j∈J

Mij
→

∏
j∈J

lim−→
(ij∈Ij)

Mij

is an isomorphism.
(ii) Moreover, ModA is generated by a family of compact projective objects; more precisely,

• for any S ∈ EDS, the free A-module over S:

A[S] =
 ProF inop → Set

T 7→ C(T, A)[C(T, S)]

sheafify

is a compact projective object in ModA;
• the family

PA := {A[S], S ∈ EDS}

generates the category ModA.
(iii) The category ModA is equipped with a canonical structure of symmetric monoidal

category (ModA,⊗A, A), which is closed, with canonical internal Hom object functor
HomA(−,−).

2.1.6. Example. Here is an easy compuation:

(R) HomA(A[S], A) = HomCond(Set)(S, A) = A(S) = C(S, A),

where the last equality use the definition of A.

The proposition holds for condensed modules over condensed rings (not necessarily com-
ing from topological rings).

2.1.7. Definition. We define the derived∞-category of A-modules as the derived∞-category
of the abelian category ModA

D(A) := D(ModA).
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It is equipped with a canonical structure of symmetric monoidal category (D(A),⊗L
A, A[0]),

which is closed, with canonical internal Hom object functor RHomA(−,−).

2.1.8. Remark. THe notation is not confusing: the bifunctors − ⊗L
A − and RHomA(−,−)

are indeed the respective derived functor of the bifunctors − ⊗L
A − and RHomA(−,−) on

ModA.

2.1.9. Remark. The condensed module theory (as well as its derived version) enjoys very
nice base change properties.

However, the category ModA (and D(A)) still does not give a satisfying answer to “quasi-
coherent modules” on Spa(A, A+), (partly) because the A-module structure does not take
account of the “reference of boundedness” or “lattice” A+ inside A.

2.2. Solid abelian groups. This subsection provides a preliminary example of analytic
rings, and can be skipped if the readers wish to proceed directly to analytic rings associated
with (complete) Huber pairs.

2.2.1. Definition. For any profinite set S with pro-finite presentation S = lim←−i
Si, we define

the solidification of Z[S] ∈ Cond(Ab) as the condensed abelian group

Z■[S] := lim←−
i

Z[Si] ∈ Cond(Ab),

which receives a canonical natural map from Z[S].

2.2.2. Definition. We define solid (condensed) abelian groups and solid complexes (of con-
densed abelian groups) as follows:

(i) A condensed abelian group M ∈ Cond(Ab) is solid if for all profinite sets S (or
equivalently just for S ∈ EDS), the natural map

Hom(Z■[S], M)→ Hom(Z[S], M) = M(S)

is an isomorphism. We denote by

ModZ■
= Mod(Z,Z)■ = Solid ⊂ ModZ = Cond(Ab)

the full subcategory of solid (condensed) abelian groups.
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(ii) A complex M ∈ D(Cond(Ab)) of condensed abelian groups is solid if for all profinite
sets S (or equivalently just for S ∈ EDS), the natural map

R Hom(Z■[S], M)→ R Hom(Z[S], M) = RΓ(S, M)

is a quasi-isomorphism. We denote by

D(Z■) = D((Z, Z)■) = D(Solid) ⊂ D(Z) = D(Cond(Ab))

the full ∞-subcategory of solid complexes (of condensed abelian groups).

2.2.3. Proposition. The categories ModZ■
and D(Z■) have the following properties:

(i) The subcategory ModZ■
⊂ ModZ is stable under taking limits, colimits, extensions,

internal Hom objects HomZ(M,−) against M ∈ ModZ. The fully faithful embed-
ding admits a left adjoint (−)■/Z called solidification, which is the unique colimit-
preserving extension of

Z[S] 7→ Z■[S].

Moreover, ModZ■
has a family of compact projective objects Z■[S] ≃ ∏I Z; and it is

equipped with a canonical symmetric monoidal structure (ModZ■
,−⊗Z■

−, Z), which
is closed, with associated internal Hom object functor HomZ(−,−).

(ii) The subcategory D(Z■) ⊂ D(Z) is stable under taking limits, colimits, extensions,
internal Hom objects RHom(M,−) against M ∈ ModZ. The fully faithful embedding
admits a left adjoint (−)L■/Z called derived solidification, which is the unique colimit-
preserving extension of

Z[S] 7→ Z■[S].

Moreover, D(Z■) has a family of compact projective objects Z■[S] ≃ ∏
I Z concen-

trated in degree 0; and it is equipped with a canonical symmetric monoidal structure
(D(Z■),− ⊗L

Z■
−, Z), which is closed, with associated internal Hom object functor

R HomZ(−,−).
(iii) A complex M ∈ D(Z) is solid if and only if H i(M) ∈ ModZ is solid. The functor

D(ModZ■
)→ D(Z) is fully faithful, and its essential image is identified with D(Z■).

(iv) We have

−⊗Z■
− = (−⊗Z −)■/Z, −⊗L

Z■
− = (−⊗L

Z −)L■/Z.

(v) The (bi)functor −⊗L
Z■
− is the left derived functor of −⊗Z■

− on either factor.
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2.2.4. Example. Since Z = Z[∗] is solid, and solidness is stable under limits and colimits,
we have that:

(i) For any abelian group M with descrete topology, M ∈ ModZ■
.

(ii) The condensed ring

Z[T ] = lim−→
i

Z[T ]/T i ∈ ModZ■

is solid.
(iii) The condensed ring

Z[[T ]] = lim←−
i

Z[T ]/T i ∈ ModZ■

is solid.
(iv) The map

Z[N ∪ {∞}]/Z[{∞}]→ Z[[T ]] ≃ lim←−
i

Z[T ]/T i

exhibits the unit of the solidification-forgetful adjunction.
(v) Evaluating T = p, one gets

Zp = Z[[T ]]/(T − p) ∈ ModZ■
.

(vi) The condensed ring R is not solid, because

R■/Z = 0.

(vii) The usual condensed tensor product Zp⊗Z Zl is nonzero, but the solid tensor product

Zp ⊗Z■
Zl =

 Zp l = p

0 l ̸= p

takes account of mixed characteristics and separates them.

2.3. Analytic rings.

2.3.1. Roughly, an analytic ring is a pair (A,MA), where A is some condensed ring, and
MA is a measure that tells you which series in an A-module are summable.

Typically here, we have (A,M) = (A, A+)■, which is induced by a Huber ring (A, A+).
We will put ourselves into this setting.
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Let A be a topological ring and S ⊂ A be a subset (without any topology). We want to
complete A-modules M with respect to elements in S. Classically, it is making M →M∧

f :=
lim←−n

M/fn isomorphisms for all f ∈ S. If S is a finite set, then it is just a sequence (though
the order of doing this may cause issues) of f -adic completion (possibly derived completion);
if S is infinite, then it might be more complicated, but in fact, it is easy and would be
certain localisation of A-modules with respect to the full subcategories of S-complete A-
modules. However, this kind of completion is not good for us, because what we wanted
was in fact a “Banach-type completion”, i.e. completion of a bounded unit ball A+ with
respect to elements of S. For example, if A is a Qp-Banach algebra, we certainly want to
complete A-modules M with a Zp-lattice M+ in the way that M+ completes to (M+)∧

p , so
M 7→ (M+)∧

p [ 1
p
] but not M 7→M∧

p = 0.
The solution will be given by (A, S)■-solid modules. We fix here our notation without

diving into their full definitions.

2.3.2. Definition. Let A be a complete Huber ring and S ⊂ A be a subset (without any
topology).

(i) We denote by Mod(A,S)■ ⊂ ModA the full subcategory of (A, S)■-solid modules.
(ii) We denote by D((A, S)■) ⊂ D(A) the full∞-subcategory of (A, S)■-solid complexes

of A-modules.

2.3.3. Remark. We will often face the situation where (A, S) = (A, A+) is a Huber pair. In
fact, it turns out that replacing S by S ∪ A◦◦ will not affect the (A, S)■-solidness, so we will
always assume S to be an integrally closed open subring A+ ⊂ A.

In this case, the (A, A+)■-solidness of an A-module M an be thought of as “completeness
with respect to certain A+-lattice”.

2.3.4. Example. We have (Qp, Z)■ ≃ (Qp, Zp)■ as Zp is the topological closure of Z in Qp.

We record some good properties of (A, A+)■-modules, which are almost the same as those
of ModZ■

.

2.3.5. Proposition. The categories Mod(A,A+)■ and D((A, A+)■) have the following proper-
ties:

(i) The subcategory Mod(A,A+)■ ⊂ ModA is stable under taking limits, colimits, exten-
sions, internal Hom objects HomA(M,−) against M ∈ ModA. The fully faithful
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embedding admits a left adjoint (−)■/A+ called solidification, which is the unique
colimit-preserving extension of the assignment

A[S] 7→ (A, A+)■[S].

Moreover, Mod(A,A+)■ has a family of compact projective objects (A, A+)■[S]; and it
is equipped with a canonical symmetric monoidal structure (Mod(A,A+)■ ,− ⊗(A,A+)■
−, A), which is closed, with associated internal Hom object functor HomA(−,−).

(ii) The subcategory D((A, A+)■) ⊂ D(A) is stable under taking limits, colimits, exten-
sions, retracts, internal Hom objects RHomA(M,−) against M ∈ ModA. The fully
faithful embedding admits a left adjoint (−)L■/A+ called derived solidification, which
is the unique colimit-preserving extension of the assignment

A[S] 7→ (A, A+)■[S].

Moreover, D((A, A+)■) has a family of compact projective objects (A, A+)■[S] con-
centrated in degree 0; and it is equipped with a canonical symmetric monoidal struc-
ture (D((A, A+)■),− ⊗L

(A,A+)■ −, A), which is closed, with associated internal Hom
object functor R HomA(−,−).

(iii) A complex M ∈ D(A) is solid if and only if H i(M) ∈ ModA is solid. The functor
D(Mod(A,A+)■) → D(A) is fully faithful, and its essential image is identified with
D((A, A+)■).

(iv) We have

−⊗(A,A+)■ − = (−⊗A −)■/A+
, −⊗L

(A,A+)■ − = (−⊗L
A −)L■/A+

.

(v) The (bi)functor − ⊗L
(A,A+)■ − is the left derived functor of − ⊗(A,A+)■ − on either

factor (reason: (A[S])■/A+ → (A[S])L■/A+ is an isomorphism, i.e. (A[S])L■/A+ is
concentrated in degree 0).

(vi) We have A ∈ Mod(A,A+)■.

2.3.6. Remark. When R = Z with discrete topology, this recovers the categories ModZ■

and D(Z■) of the previous subsection.

What is left now is the expression of

(A, A+)■[S] = (A[S])■/A+ ≃→ (A[S])L■/A+
.

Before that, let us see some examples, which illustrate the very counter-intuitive property
that “solidification/completion” preserves all colimits.
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2.3.7. Example. A counter-intuitive example would be the preservation of colimits of the
“solidification/completion” functor (−)(L)■/Z+

p (for (A, A+) = (Qp, Zp)); this implies that⊕
N

Qp ≃
⊕
N

Qp ∈ Mod(Qp,Zp)■ .

Which means that its (Qp, Zp)■-solidification is not the Qp-Banach space⊕̂
N

Qp ≃
⊕̂

N
Qp ∈ Mod(Qp,Zp)■ .

This contradicts our naive intuition that ⊕N Qp should be p-adically completed to ⊕̂NQp.
In fact, we should keep the following intuition:
• The (Qp, Zp)■-solidification does not change Qp = Qp[∗] as well as its direct sums.
• The (Qp, Zp)■-solidification is an operation that takes place only on compact projec-

tive generators Qp[S], which are solidified to

(Qp[S])L■/Zp ≃ (
∏
I

Zp)[1
p

].

This provides a “formal” substitute in solid p-adic functional analysis to Qp-Banach
spaces in classical p-adic functional analysis.

For this reason of dissimilarity, we will abandon the word “completion” in “solidification/completion”,
in order to mark the solidification as an independent (yet analogous) operation from the com-
pletion.

Let us come back to the expression of (A, A+)■[S]. They are made so that the (A, A+)■-
solidness can be checked using individual (or equivalently, finitely many) elements f ∈ A+.

2.3.8. Definition. Firstly, we work with discrete Huber pairs.
(i) For any pair (R, R) where R is a discrete finitely generated Z-algebra, we define

R■[S] := (R, R)■[S] := lim←−
i

R[Si]

for any extremally disconnected set S = lim←−i
Si.

(ii) For any pair (R, R) where R is arbitrary discrete Z-algebra, keeping in mind solidity
should be checked using individual elements, thus using only finitely many elements,
we define

R■[S] := (R, R)■[S] := lim−→
R′→R

(R′)■[Si]

where R′ runs over all finitely generated sub-Z-algebras of R.
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(iii) For any discrete Huber pairs (R, R+), we define

(R, R+)■[S] := (R[S])(L)■/R+ = R⊗R+ (R+)■[S].

The last identity can be clarified by the following computation: for any (discrete)
R-module M , we have

(M [S])L■/R+ ≃M (L)■/R+ ≃M ⊗(L)
R+ (R+)■[S]

2.3.9. Proposition. The structure (R, R+)■ defines a complete analytic ring.

For any (topological) ring A, we denote by Aδ the topological ring A endowed with the
discrete topology.

2.3.10. Definition. Now, we turn to general complete Huber pairs (A, A+):
(v) For any complete Huber pair (A, A+), we define

(A, A+)■[S] := (A[S])(L)■/A+δ ̸≃ A⊗R+ (R+)■[S].

The last non-isomorphism is due to the in general non-discrete topology on A.

2.3.11. Proposition. Let (A, A+) be a complete Huber pair. Then

(A, A+)■[S] = lim−→
B⊂A+

(A[S])(L)■/Bδ = lim−→
B⊂A+

lim−→
M⊂A

(M [S])(L)■/Bδ ≃ lim−→
B⊂A+

lim−→
M⊂A

∏
I

M

where B runs through all finitely generated (over Z) subalgebras of A+, and M = lim←−i
Mi

is an open subgroup of A that is a prodiscrete B-module with discrete B-module modulo In

quotients Mi (one can check that B is always contained in some ring of definition A0 with
an ideal of definition I).

The (A, A+)■-solidness can indeed be checked with respect to individual elements of A+:

2.3.12. Proposition. Let (A, A+) be a complete Huber pair and M ∈ D(A). Then the
following assertions are equivalent:

(i) M is (A, A+)■-solid.
(ii) M is (A, R)■-solid for any finitely generated (over Z) subalgebra of A+.

(iii) M is (A, {f})■-solid for any f ∈ A+.
(iv) M is Z[T ]■-solid via the map Z[T ]→ A, T 7→ f for any f ∈ A+.

Proof. It follows from [And21, Lemma 3.31, Proposition 3.32]. □
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2.3.13. Example. Let M = lim←−i
Mi be a prodiscrete abelian group. Denote M [T ] := M ⊗Z

Z[T ] ∈ ModZ[T ] where T is a variable2. Then

(M [T ])L■/Z ≃M [T ]

(M [T ])L■/Z[T ] ≃M⟨T ⟩ = lim←−
i

Mi[T ].

2.3.14. Corollary. A map of complete Huber pairs (A, A+)→ (B, B+) induces a map of an-
alytic rings (A, A+)■ → (B, B+)■ is a map of complete analytic rings, i.e. B ∈ Mod(A,A+)■.

2.4. Pushout and steadiness.

2.4.1. Remark. Pushout of analytic rings makes more sense with the larger class of analytic
animated rings (A,MA).

Let us point out the principal difference when dealing with analytic animated rings:
(i) The definition involves the derived (A,MA)-solidification

−⊗L
A (A,MA) := (−)L■/MA : D≥0(A)→ D≥0(A,MA).

We denote by (A,MA)[S] the image of A[S]; it is connective, but it may not be
concentrated in degree 0 in general.

(ii) For a good notion of commutativity of analytic animated rings, one needs the Frobe-
nius map A → A/Lp to induce a map of analytic animated rings (A,MA) →
(A/Lp,M/Lp). This is the case for example when (A,MA)[S] is concentrated in
degree 0, or when (A,MA) is over Z■; so it is in practice always the case.

(iii) The ∞-subcategory D(A,MA) ⊂ D(A) is in general not equivalent to the derived
category of the abelian category D(A,MA)♡. Nevertheless, we still have that M ∈
D≥0(A) lies in D≥0(A,MA) if and only if all H i(M)’s lie in D(A,MA)♡.

2.4.2. Definition. We denote the pushout of analytic animated rings along maps (B,MB)←
(A,MA)→ (C,MC) by

(E ,ME) := (B,MB)⊗L
(A,MA) (C,MC).

It is not true that (B,MB)-solidification and (C,MC)-solidification commute with each
other. Hence in general, the (E ,ME)-solidification is an (infinite) iterated colimit of inter-
wined (B,MB)-solidification and (C,MC)-solidification. If two solidification commute, we
are happy.

2To be distinguished from M [S] = M ⊗Z Z[S] ∈ ModZ where S is a profinite set.
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2.4.3. Definition. A map of analytic animated rings (A,MA) → (B,MB) is called steady
if for any map of analytic animated rings (C,MC), the following equivalent assertions hold:

(i) For any (C,MC)-solid complex M , the complex M⊗L
(A,MA)(B,MB) is already (C,MC)-

solid.
(ii) For any (C,MC)-solid complex M , the natural map

M ⊗L
(A,MA) (B,MB)→M ⊗L

(C,MC) (E ,ME)

is a quasi-isomorphism.

The notion is related to a morphism of Huber pairs f : (A, A+) → (B, B+) being adic
(i.e. there exist a pair of definition (A0, I) of A and a ring of definition B0 ⊂ B such that
f(A0) ⊂ B0 and (B0, f(I)B0) is a pair of definition of B).

2.4.4. Lemma. If both maps of analytic animated rings (A,MA)→ (B,MB) and (A,MA)→
(C,MC) are steady, then there are natural equivalences

(−⊗L
(A,MA)(B,MB))⊗L

(A,MA)(C,MC) ≃ −⊗L
(A,MA)(E ,ME) ≃ (− ≃ ⊗L

(A,MA)(C,MC))⊗L
(A,MA)(B,MB)

of functors D(E)→ D(E) that factor through D(E ,ME) ⊂ D(E).

Steady maps have good properties:

2.4.5. Proposition. Steadiness is stable under base change, composition and all colimits.

2.4.6. Example. All maps (and their compositions) in the following diagram are steady:

(Z[T ±1], Z[T ])■ (Z[T ±1], Z[T ±1])■ (Z[T ±1], Z[T −1])■

Z[T ]■ (Z[T ], Z)■ (Z[T ±1], Z)■

Z■
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which can be translated intuitively as

{0 ̸= |T | ≤ 1} {|T | = 1} {|T | ≥ 1}

{|T | ≤ 1} Affine line {|T | ≠ 0}

Base point.

⊃ ⊂

⊃

⊂

⊂ ⊃ ⊃
⊃

⊃

Rational localisations can be deduced from this diagram by finite steps of base change
and composition.

2.4.7. Relation with rational localisation. Let (A, A+) be a complete Huber pair and
let f, g ∈ A generating an open ideal. Consider the pushout

(B,MB) :=
(
(A, A+)■ ⊗L

(Z[T ],Z)■ (Z[U±1], Z)
)
⊗L

(Z[T ],Z)■ Z[T ]■

induced by the maps
• “inverting g”: Z[U ]→ A, U 7→ g, and
• “requiring

∣∣∣f
g

∣∣∣ ≤ 1”: Z[T ]→ (A, A+)■ ⊗L
(Z[U ],Z)■ (Z[U±1], Z), T 7→ f ⊗ U−1.

Computation shows that the (B,MB)-solidification of A is isomorphic to

A⟨T ⟩/L(gT − f).

Therefore, if the multiplication map by A⟨T ⟩ gT −f→ A⟨T ⟩ is a closed embedding (e.g. when
(A, A+) is a complete Huber pair that is discrete or sheafy and locally Tate, or such that f, g

generate the unit ideal of A), then we obtain
(
(A, A+)■ ⊗L

(Z[U ],Z)■ (Z[U±1], Z)
)
⊗L

(Z[T ],Z)■ Z[T ]■ ≃
(

A

〈
f

g

〉
, A+

〈
f

g

〉)
■

.

This is [And21, Proposition 4.11].

In particular, we obtain:

2.4.8. Corollary. Let (A, A+) be a discrete or sheafy and locally Tate (complete) Huber pair
and U ⊂ Spa(A, A+) be a rational open subset of the form {1 ≤ |f |} or {|f | ≤ 1}. Then the
induced map of analytic rings (A, A+)■ → (AU , A+

U)■ is steady.
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3. Analytic descent of “quasi-coherent modules” on sheafy locally Tate
adic spaces

We are going to prove:

3.0.1. Theorem. Let (A, A+) be a sheafy complete Huber pair. Then the presheaf on rational
open subsets of Spa(A, A+) with values in Cat∞

U 7→ D((AU , A+
U)■)

satisfies analytic descent.

3.0.2. Remark. We remark that, going through the original proof of Andreychev, we find
that the “locally Tate” assumption is not necessary, so it has been removed from the above
statement. Since this descent is the only place where this assumption could be used, this
will imply that “locally Tate” assumption is not necessary neither for the theorem (1.4.1)
(except for the analytic descent of stably uniform pseudocoherent modules PCoh0

A, which
we are not discussing in this talk, due to open mapping theorem issues), cf. its final proof.

Zongze Liu has informed us that Kedlaya in his recent ongoing course (Fall 2024) has
also proved it in this form, cf. combination of [Ked24, Theorem 14.1.15, Theorem 14.4.1,
Proposition 13.3.2].

3.1. Comparison with the proof in algebraic case. Let us recall the proof of the fol-
lowing theorem:

3.1.1. Theorem (Lurie). The presheaf on affine schemes with values in Cat∞

U = Spec A 7→ D(A)

satisfies fpqc (hyper)descent.

Proof. Observe first that

(a) Any Zariski affine open covering of can be refined by a finite composition of coverings
of the form D(f) ∪D(1− f). So we are reduced to this covering.
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We denote X = Spec A, U = D(f) and V = D(1−f). This step does not use the special
form of the affine opens U and V . We need to prove that the diagram

D(X) D(U)

D(V ) D(U ∩ V )

LV

LU

LV

is Cartesian in Cat∞. Here, we have used the facts that
(b) LU and LV are left adjoints to fully faithful embeddings.
(c) LU sends D(V ) into D(U ∩ V ), and LV sends D(U) into D(U ∩ V ); and LU ◦LV ≃

LU∩V ≃ LV ◦ LU .
Using again the point (b), the Cartesianness is equivalent to proving the equivalence of the
functor

F : D(X)→ D(U)×D(U∩V ) D(V ), M 7→ (LUM, LV M, LV (LUM) ι≃ LU(LV M)).

This functor admits a right adjoint

G : D(U)×D(U∩V ) D(V )→ D(X), (MU , MV , LV MU
ι≃ LUMV ) 7→MU ×LV MU

ι
≃LU MV

MV .

Let us prove that the unit idD(X) → GF is an equivalence. Observe that
(d) If U ⨿ V → X is a Zariski covering, then the functor D(X) → D(U) × D(V ) is

conservative.
Then it is enough to check equivalence after localising (LU , LV ), which is then very obvious.
The proof that the counit FG→ id is an equivalence is similar. □

Though (b)–(d) are true in general, it is enough to know them for the special covering
as in (a) in order to prove the theorem.

Let us come back to the analytic case. We will proceed samely as above, but replacing
(a)–(d) with appropriate analytic analogues.

We have already two of them:
• The (b) is easy: LU in the analytic geometry would be

LU := −⊗L
(A,A+)■ (AU , A+

U)■ = (−⊗L
A AU)L■/A+

U ,

which is the left adjoint to the fully faithful inclusion D((AU , A+
U)■)→ D((A, A+)■)

(2.3.5).
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• The (c) is also clear (though non trivially), from the steadiness of rational localisation
of discrete or sheafy (complete) Huber pairs (2.4.8).

3.2. Laurent coverings. We provide an analytic analogue of the (a):

3.2.1. Theorem (Tate, Bosch-Güntzer-Remmert; Huber, Gabber-Ramero). Let (A, A+) be
a complete Huber pair. Then any analytic open covering of Spa(A, A+) can be refined by a
finite composition of affinoid coverings of the following types:

• Simple balanced covering: X( 1
f
)⨿X( 1

1−f
)→ X.

• Simple Laurent covering: X( 1
f
)⨿X(f

1 )→ X.
If moreoever A is Tate, then the second type alone will suffice.

In fact, for adic spaces, Huber proved the refinement by Laurent coverings, [Hub94,
Lemma 2.6], and an argument of Gabber-Ramero shows that these are further refined by
simple balanced and simple Laurent ones, see [Ked17, Lemma 1.6.12].

3.3. Discrete Huber pairs. We provide an analogue of (d) for discrete Huber pairs:

3.3.1. Proposition. The functor

D((Z[T ], Z)■)→ D(Z[T ]■)×D((Z[T ±1], Z[T −1])■)

associated with the simple Laurent covering (1.3.8.1) is conservative.

Sketch of proof. One can write the functor as induced by two functors F|T |≤1 and F|T |≥1 by
projecting to two factors. By some important computations in [CS19], we obtain

ker F|T |≤1 = ModZ((T −1))(D((Z[T ], Z)■)), ker F|T |≥1 = ModZ[[T ]](D((Z[T ], Z)■)).

Hence the kernel of the functor in question is ModZ((T −1))⊗L
(Z[T ],Z)■

Z[[T ]](D((Z[T ], Z)■)); how-
ever,

Z((T −1))⊗(Z[T ],Z)■ Z[[T ]] = Z((T −1))⊗(L)
Z[T ] Z[[T ]] = 0,

because if T is a topologically nilpotent unit such that T −1 is also topologically nilpotent,
then 1 = (T · T −1)n → 0 as n → +∞. Therefore, the last kernel is zero, saying the
conservativity. □

3.3.2. Proposition. The functor

D((Z[T ], Z)■)→ D((Z[T ±1], Z[T −1])■)×D((Z[T ±1], Z[T −1])■)

is conservative.
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Proof. The proof is similar. But this time, one uses that Z[[1− T ]]⊗(L)
(Z[T ],Z)■ Z[[T ]] = 0. □

3.4. Proof of analytic descent of “quasi-coherent modules”. To conclude the proof,
we only need to prove the following analogue of (d):

3.4.1. Proposition. Let (A, A+) be a (complete) Huber pair and f ∈ A. Then the functors

D((A, A+)■)→ D((A
〈

1
f

〉
, A+

〈
1
f

〉
)■)×D((A

〈
f

1

〉
, A+

〈
f

1

〉
)■)

D((A, A+)■)→ D((A
〈

1
f

〉
, A+

〈
1
f

〉
)■)×D((A

〈
1

1− f

〉
, A+

〈
1

1− f

〉
)■)

are conservative.

Proof. We consider only the first functor; the proof is similar for the second. Consider the
following commutative diagram of funtors:

D((A, A+)■) D((A
〈

1
f

〉
, A+

〈
1
f

〉
)■)×D((A

〈
f
1

〉
, A+

〈
f
1

〉
)■)

D((Z[T ], Z)■) D(Z[T ]■)×D((Z[T ±1], Z[T −1])■)

induced by the map (Z[T ], Z)→ (A, A+), T 7→ f , where vertical maps are forgetful functors.
Now, the left vertical map is conservative (as well as the right vertical one), and the lower
horizontal arrow is convervative too; hence so is the upper one. □

Now we can proceed as in the proof in algebraic case to conclude the proof of the descent
theorem (3.0.1) of D((A, A+)■).

4. Cut out some descendable full subcategory of “quasi-coherent modules”

Our goal will be proving analytic descent of the full subcategory of dualisable mod-
ules D((A, A+)■)dual ⊂ D((A, A+)■) satisfies analytic descent. However, the definition of
dualisability will not be good enough to verify descent properties. Hence, to cut out the
dualisability condition, one needs some auxiliary descendable properties of “quasi-coherent
modules”, which may be of other independent interests.
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4.1. Dualisable objects. Let (C,⊗, 1) be a symmetric monoidal∞-category. For example,
it can be (D((A, A+)■),−⊗L

(A,A+)■ −, A) for complete Huber pairs (A, A+).

4.1.1. Definition (Dualisable objects). Let C be as above. An object M ∈ (C,⊗, 1) is called
dualisable if there exists a dual M ′ ∈ C, an evaluation map evM : M ′ ⊗ M → 1 and a
coevaluation map coevM : 1→M ⊗M ′ such that

M ≃ 1⊗M
coevM ⊗id→ M ⊗M ′ ⊗M

id⊗evM→ M ⊗ 1 ≃M

M ′ ≃M ′ ⊗ 1 id⊗coevM→ M ′ ⊗M ⊗M ′ evM ⊗id→ 1⊗M ′ ≃M ′

compose naturally to identity morphisms respectively. We denote by Cdual the full subcate-
gory of dualisable objects of C.

Dualisability is preserved by symmetric monoidal functors.

4.1.2. Lemma. If (C,⊗, 1) is closed (so that −⊗− right adjoints to internal Hom Hom(−,−)),
then for any M ∈ Cdual (with dual M ′), we have an isomorphism natural in N ∈ C

M ′ ⊗N ≃ Hom(M, N).

In particular, we have an isomorphism M ′ ≃ Hom(M, 1) =: M∨.

It is unclear whether D((A, A+)■)dual satisfies analytic descent, since the conditions in
the definition is seemingly not quite descendable.

4.2. (Pseudo)compact objects. Let C be a stable infinity category with colimits, let
R Hom(−,−) denote the mapping spectrum in C.

4.2.1. Definition (Compact objects). Let C be as above. An object M ∈ C is called compact
if R Hom(M,−) : C → Sp commutes with filtered colimits, or equivalently [Lur16, Propo-
sition 1.4.4.1 (2)], commutes with direct sums. We denote by Cω the full subcategory of
compact objects of C (the ω stands for “ω-filtered” colimits).

4.2.2. Lemma. A complex M ∈ D((A, A+)■) is compact if and only if M is a retract of a
finite complex with terms being compact projective genetors (A, A+)■[Si] with profinite set Si

at the degree i.

This holds in general for any compactly generated C in place of D((A, A+)■).
Compactness is a descendable property:
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4.2.3. Proposition. Let (A, A+) be a (complete) Huber pair and {Ui → Spa(A, A+)}i be a
rational open covering. An object M ∈ D((A, A+)■) is compact if and only if all M ⊗L

(A,A+)■
(AU , A+

U)■ ∈ Spa(AU , A+
U) are compact.

Similarly, we may consider the pseudocompactness, which is a weaker notion than com-
pactness. But now we have to take account of the t-structure on C, for example the canonical
t-structure on D((A, A+)■).

4.2.4. Definition (Pseudocompact objects). Let C be as above (with t-structure). An ob-
ject M ∈ C is called pseudocompact if for any n ∈ Z, R Hom(M,−) : C≥n → Sp com-
mutes with filtered colimits, or equivalently [Lur16, Proposition 1.4.4.1 (2)], for any n ∈ Z3,
R Hom(M,−) : C≥n → Sp commutes with direct sums. We denote by Cpc the full subcate-
gory of pseudocompact objects of C.

4.2.5. Lemma. A complex M ∈ D((A, A+)■) is pseudocompact if and only if M is admits
a bounded above resolution with terms being compact projective generators (A, A+)■[Si] with
profinite set Si at the degree i.

This holds in general for any compactly generated C in place of D((A, A+)■).
Pseudocompactness is also a descendable property:

4.2.6. Proposition. Let (A, A+) be a (complete) Huber pair and {Ui → Spa(A, A+)}i be
a rational open covering. An object M ∈ D((A, A+)■) is pseudocompact if and only if all
M ⊗L

(A,A+)■ (AU , A+
U)■ ∈ Spa(AU , A+

U) are pseudocompact.

4.3. Nuclear objects. Let (C,⊗, 1) be a closed symmetric mononidal ∞-category (resp.
stable ∞-category). For example, it can be (D((A, A+)■),− ⊗L

(A,A+)■ −, A) for complete
Huber pairs (A, A+).

4.3.1. Shorthand notation. Let P ∈ C. We define the object in C

P ∨ := Hom(P, 1)

and the mapping space (resp. mapping spectrum)

P (∗) := R Hom(1, P ).

There is a canonical evaluation map evP : P ∨ ⊗ P → 1.
3One must repeat this, since for fixed n ∈ Z, the two conditions may not be equivalent.
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4.3.2. Definition (Trace-class maps and Nuclear objects). Let C be as above.
(i) A map f : P → Q in C is called trace-class or nuclear if it lies in the image of the

natural map
π0(P ∨ ⊗Q)(∗)→ π0R Hom(P, Q),

or equivalently, if there exists a map ϕ : 1→ P ∨ ⊗Q, such that the composed map

P
id⊗ϕ→ P ⊗ P ∨ ⊗Q

evP ⊗id→ Q

is equivalent to f .
(ii) Suppose that C is compactly generated by a family P (of compact generators). An

object N ∈ C is called nuclear if for any P ∈ P (or equivalently, for any compact
object P ), the natural map of spaces (resp. spectra)

(P ∨ ⊗N)(∗)→ R Hom(P, N)

is an isomorphism. We denote by Cnuc the full subcategory of nuclear objects of C.

4.3.3. Proposition. Suppose that C is compactly generated by a family P. If N ∈ Cnuc, then
for any M ∈ C and any compact object P , the natural map

Hom(P, M)⊗N → Hom(P, M ⊗N)

is an isomorphism.

When C = D((A, A+)■), we write

Nuc((A, A+)■) := D((A, A+)■)nuc.

4.3.4. Remark. It turns out that Nuc((A, A+)■) depends only on A, but not on A+, for any
(complete) Huber ring A [And23, Korollar 3.18].

Nuclearity is sort of an “orthogonal” concept to (pseudo)compactness.

4.3.5. Example. We have

(Qp, Zp)■[S] ≃ (
∏
I

Zp)[1
p

] ̸∈ Nuc((Qp, Zp)),

while
(Qp, Zp)■[S]∨ ≃ C(S, Qp) ∈ Nuc((Qp, Zp)).
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The ∞-subcategory Nuc((Qp, Zp)■) ⊂ D((Qp, Zp)■) is stable under colimits and generated
under colimits by the Qp-Banach spaces C(S, Qp), and contains for example ∏I Qp and
Qp-Fréchet spaces.

4.3.6. Proposition. Let (A, A+) be a (complete) Huber pair and {Ui → Spa(A, A+)}i be a
rational open covering. An object M ∈ D((A, A+)■) is nuclear if and only if all M ⊗L

(A,A+)■
(AU , A+

U)■ ∈ Spa(AU , A+
U) are nuclear.

4.4. Proof of analytic descent of D((A, A+)■)dual. Now we claim that dualisability sat-
isfies descent, by observing an abstract nonsense:

4.4.1. Proposition. Let C be an ∞-category (such that dualisability, compactness and nu-
clearity are well-defined). Let M ∈ C.

(i) If M is compact and nuclear, then M is dualisable.
(ii) The converse is true if the unit object 1 ∈ C is compact.

Proof. (i) Since M is nuclear and M is compact, we can set P = M in the definition of
nuclearity so as to obtain

(M∨ ⊗M)(∗) ≃→ R Hom(M, M).

In particular, idM is trace-class and is induced by some ϕ : 1→M∨⊗M . Then the canonical
evaluation map evM : M∨ ⊗M → 1 together with the coevaluation map coevM := ϕ makes
M dualisable with dual M∨.

(ii) Conversely, suppose that 1 ∈ C is compact. For any dualisable M ∈ C with dual M ′,
we have

R Hom(M,
⊕

i Ni) R Hom(1, Hom(M, (⊕i Ni))) R Hom(1, M ′ ⊗ (⊕i Ni))

⊕
i R Hom(M, Ni)

⊕
i R Hom(1, Hom(M, Ni))

⊕
i R Hom(1, M ′ ⊗Ni)

≃ ≃
(4.1.2)

≃ 1 ∈ C is compact
≃ ≃

(4.1.2)

proving the compactness of M . On the other hand, still by (4.1.2), we obtain

M∨ ⊗N ≃M ′ ⊗N ≃ Hom(M, N)

for any N ∈ C; in particular for N = M , we see that idM is trace-class. Then

M = lim−→(M idM→ M
idM→ · · · ).
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Using the following lemma, one sees that for any compact object P ∈ C, the diagonal
morphisms induce

P ∨ ⊗M = lim−→(P ∨ ⊗M → P ∨ ⊗M → · · · )

= lim−→(Hom(P, M)→ Hom(P, M)→ · · · ) ≃ Hom(P, M),

whence the nuclearity of M . □

4.4.2. Lemma. Let f : P → Q be a trace-class map in C. For any M ∈ C, there exists a
dashed arrow fitting into the following commutative diagram

M∨ ⊗ P M∨ ⊗Q

Hom(M, P ) Hom(M, Q).

δ

Proof. Suppose f is induced by ϕ : 1→ P ∨ ⊗Q. Then

Hom(M, P ) Hom(M,id⊗ϕ)→ Hom(M, P ⊗ P ∨ ⊗Q) Hom(M,evP ⊗id)→ Hom(M, Q)

compose to Hom(M, f). But this fits into the commutative diagram:

Hom(M, P ) Hom(M, P ⊗ P ∨ ⊗Q) Hom(M, Q)

Hom(M, P )⊗ P ∨ ⊗Q M∨ ⊗Q

id⊗ϕ

δ

Hom(M,id⊗ϕ) Hom(M,evP ⊗id)

ev⊗id

where δ denotes the obvious composition. □

So the descendability of nuclearity and compactness implies that dualisability is also a
descendable property:

4.4.3. Proposition. Let (A, A+) be a (complete) Huber pair and {Ui → Spa(A, A+)}i be a
rational open covering. An object M ∈ D((A, A+)■) is dualisable if and only if all M⊗L

(A,A+)■
(AU , A+

U)■ ∈ Spa(AU , A+
U) are dualisable.
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5. Final touch: get discreteness

For now, we have no idea of the distance between the combination of full subcategories
of D((A, A+)■) and the categories Perf(A) and PCohA, which are thought of as discrete
modules.

5.1. Discrete modules. First, we embed D(A) into D((A, A+)■). The objects of its es-
sential image are said to be discrete modules.

5.1.1. Definition. Let A be a topological ring. We define the condensification functor

CondA : D(A)→ D(A), M• 7→M• ⊗L
Aδ A,

where we put discrete topology on complexes M• ∈ D(A).

The functor CondA is the composite of two functors:
(i) D(A) ↪→ D(Aδ), M• → M•, which is fully faithful, exact, and preserves filtered

colimits;
(ii) D(Aδ)→ D(A), N 7→ N ⊗L

Aδ A, which is simply the derived base change.

5.1.2. Definition (Discrete objects). Let A be a topological ring. An object M ∈ D(A) is
called (relatively) discrete if M ≃ CondA(M0) for some M0 ∈ D(A).

5.1.3. Lemma. Let A be a topological ring and i ∈ Z.
(i) The functor CondA is fully faithful, exact, symmetric monoidal, and preserves filtered

colimits. And for M ∈ D(A), if H i(CondA(M)) = 0, then H i(M) = 0 (tor-amplitude
control).

Moreover, assume that A is a complete Huber ring.
(ii) The functor CondA lands in D((A, A+)■) ⊂ D(A).

(iii) Assume that A is moreover locally Tate. If M ∈ D(A) is quasi-isomorphic to a
complex of finite free A-modules and verifies H i(M) = 0, then H i(CondA(M)) = 0.

Indeed, (ii) follows because by completeness of the Huber ring A, A ∈ D((A, A+)■),
which is stable under colimits; (iii) follows from the open mapping theorem for complete and
first countable topological A-modules.

5.1.4. Remark. The (ii) can be strengthened: if A is a complete Huber ring, then the functor
CondA lands in Nuc((A, A+)■) ⊂ D(A). Indeed, this subcategory is stable under colimits,
and A = A[∗] ∈ D((A, A+)■).
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Thus, discreteness implies nuclearity in D((A, A+)■).

5.1.5. Fact. For M ∈ D(A) a classcial complex, the following are equivalent:
(i) M is dualisable in D(A);
(ii) M is compact in D(A);
(iii) M ∈ Perf(A).

Similarly, the following are also equivalent:
(i) M is pseudocompact in D(A);
(ii) M ∈ PCohA.

5.1.6. Corollary. Let (A, A+) be a complete Huber pair.
(i) An object M ∈ D((A, A+)■) is discrete and dualisable if and only if M = CondA(M0)

for some dualisable M0 ∈ D(A).
(ii) An object M ∈ D((A, A+)■) is discrete and pseudocompact if and only if M =
CondA(M0) for some pseudocoherent M0 ∈ D(A).

Proof. (i) The “if” direction is clear since CondA is symmetric monoidal.
For the “only if” direction, write M = CondA(M0) for M0 ∈ D(A). Notice that M is

compact; so by fully faithfulness and colimit preservation property of CondA, M0 is compact
in D(A), hence M0 is dualisable in D(A) by the fact above.

(ii) The “if” part can be seen by writing pseudocoherent complexes as a bounded above
complex of finite free A-modules. The “only if” part is similar to that of (i). □

5.2. Get discreteness from descendable properties. Discreteness is not a descendable
property, as D(A) does not satisfy analytic descent.

However, we have the following upshot:

5.2.1. Theorem. Let (A, A+) be a complete Huber pair. Let M ∈ D((A, A+)■) be pseudo-
compact and nuclear. Then M is discrete.

Sketch of proof. The proof consists of two steps: the first is abstract, while the second is
essential.

Step 1: Given a family of compact projective generators P ⊂ D((A, A+)■) such that
for any P ∈ P , the object P ∨ = (R) Hom(P, 1) is concentrated in degree 0; for example,
can choose P = {(A, A+)■[S], S profinite sets}, since ((A, A+)■[S])∨ ≃ C(S, A) sitting in
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degree O. Any pseudocompact and nuclear M can be written as a filtered colimt

M = lim−→
n

Mn

such that:
(a) All Mn are dualisable and are successive extension of objects of the form

cone(1− f : P → P )

where P ∈ P and f : P → P is a trace-class map.
(b) We have

cone(Mn →M) ∈ D≤−n((A, A+)■).

Let us now prove this. By shifting around, we may assume M lies in D≤0((A, A+)■) and
takes the form

M ≃ (· · · → P2 → P1 → P0 → 0)

with Pi ∈ P . Consider the map
ι : P0[0]→M

induced by the map id : P0 → P0 in degree 0. We have (commutative diagram of) maps

Hom(P0[0], M) (P ∨
0 ⊗M)(∗)

Hom(P0[0], P0[0]) (P ∨
0 ⊗ P0)(∗)

≃

where the upper map is by nuclearity of M , and the surjectivity of the right map follows
from the assumption that P ∨

0 lies in D≤0. Thus, there exists a trace-class map f : P0 → P0

such that ι factors as
ι : P0[0] f→ P0[0] ι→M,

which induces a map
M1 := cone(1− f : P0 → P0) ι→M

whose cone lies in D≤−1((A, A+)■). Therefore, we can iterate this process to find all the
desired Mn’s.

Step 2: By Step 1 and since the condensification functor CondA preserves filtered col-
imits, it is then enough to prove that cone(1 − f : (A, A+)■[S] → (A, A+)■[S]) is discrete
for any profinite set S and any trace-class map f : (A, A+)■[S]→ (A, A+)■[S].
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For notational convenience and without loss of generality, we consider the case where
(A, A+) = (Qp, Zp) and S is a light profinite set (i.e. S is a countable projective limit of
finite sets, so in particular C(S, Z) ≃⊕I Z for some countable set I).

Being trace-class, the map f is of the form

f : (
∏
I

Zp)[1
p

]→ (
∏
I

Zp)[1
p

]

m 7→
∑

i

fi(m)⊗ yi

with all yi ∈ p−NZp for some uniform N ∈ N and fi ∈ C(S, Qp) = ⊕̂
IQp converging to 0.

One can rescale so that yi ∈ Zp for all i ∈ I.
Since fi → 0, there exists a finite subset I0 ⊂ I such that fi ∈ C(S, pZp) for any i ∈ I\I0.

By decomposing ∏I Zp as ∏I0 Zp ×
∏

I\I0 Zp, one can “represent” f by the matrixF11 F12

F21 F22

 ,

where for example we set F11 = f |I0 and F22 = f |I\I0 . Hence 1 − f is “represented” by the
matrix 1− F11 −F12

−F21 1− F22

 .

By our choice of I0 such that fi ∈ C(S, pZp) for any i ∈ I\I0, we see that 1−F22 is invertible
on (∏I\I0 Zp)[ 1

p
], because we can write down the formal inverse power series and check its

convergence. Therefore, its cone is quasi-isomorphic to

cone
1− F11 : (

∏
I0

Zp)[1
p

]→ (
∏
I0

Zp)[1
p

]
 ,

which is a two-term complex of finite free Qp-modules whence discrete. □

5.3. Proof of analytic descent of Perf(A) and PCohA.

Proof of (1.4.1). The tor-amplitude controlness of CondA (5.1.3) for locally Tate complete
Huber pairs (A, A+) reduces us to considering only the cases of Perf(A) and PCohA.

For Perf(A): By corollary (5.1.6, i), we have an equivalence

Perf(A) ≃ D(A)dual ≃→ D((A, A+)■)dual ∩D(A).
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Since dualisability in D((A, A+)■) (equivalent to compactness and nuclearity) implies dis-
creteness by theorem (5.2.1), we have D((A, A+)■)dual ⊂ D(A). So we have

Perf(A) ≃→ D((A, A+)■)dual,

which satisfies analytic descent.
For PCohA: Any discrete module is nuclear in D((A, A+)■), so we have an equivalence

PCohA → D((A, A+))pc ∩D(A) = D((A, A+))pc ∩D(A) ∩ Nuc((A, A+)■)

by corollary (5.1.6, ii). By theorem (5.2.1), pseudocompactness and nuclearity implies dis-
creteness, hence D((A, A+))pc ∩ Nuc((A, A+)■) ⊂ D(A). Therefore we obtain

PCohA
≃→ D((A, A+))pc ∩ Nuc((A, A+)■),

which satisfies analytic descent. □

Part 2. Complements

6. Analytic K-theory

This section concerns the analytic K-theory, about which unfortunately I had no time
to discuss during my talk.

6.1. From algebraic to analytic K-theory.

6.1.1. The non-connective4 algerbaic K-theory of a scheme X is defined as

K(X) := K(D(X)) := K(D(X)ω) = K(Perf(X)) ∈ Sp,

which fits into a more general theory, the Robert Thomason’s (non-connective) K-theory
K(C) of any compactly generated ∞-category C (which we think of as a “large” category,
while idempotent complete stable ∞-categories are “small”); The compact generation is
important here, as this type of large categories can be reconstructed from small ones, and

4Recall that the connective K-theory K(−) is not a localising invariant on Catidem
st , because the Verdier

quotient in this category is the usual Verdier quotient composed with the idempotent completion (i.e. the
so-called Karoubian closure), and this last operation changes K0 but not K≥1; in fact, K0(C) → K0(Cidem)
is injective (and isomorphism if and only if C is idempotent complete) and Ki(C)

≃→ Ki(Cidem) for any i ≥ 1.
On the contrary, the non-connective K-theory K(−) is a localising invariant on Catidem

st (with values in
Sp). So the better-behaved K-theory should be the non-connective one, which is the only one that we will
consider. The two are related by K(−)→ Ω∞K(−) which is an equivalence on connected covers.
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K(C) is defined as K(Cω). The presheaf X 7→ K(X) on schemes satisfies Nisnevich descent
since D(X) (and hence Perf(X) = D(X)ω) does so (it even satisfies fpqc descent) and verifies
open-closed excision sequence in Catidem

st .

6.1.2. Now we would like to pass from algebraic to analytic K-theory. There are at least two
approaches:

(i) One way is perhaps via formal models. However, the K-theory of perfect complexes
on formal schemes is not a reasonable invariant, because the restriction functor to
an open subscheme is not a localisation in the categorical sense: for example, the
functor D(Z[[x, y]])→ D(Z[[x, x−1, y]]) is not induced by the localisation “inverting
x−1” (since Z[x][[y]][x−1] ̸≃ Z[x, x−1][[y]]), there should be involved the completion
with respect to the element x−1. Some topological information, e.g. completeness
with respect to the lattice A+, is missing in the usual (discrete) derived category of
quasi-coherent sheaves.

(ii) Another idea is to consider the presheaf Spa(A, A+) 7→ K(Perf(A)) on complete Hu-
ber pairs that are locally Tate. Although this satisfies analytic descent, the Nisnevich
descent fails.

Thus our slogans:
• We should keep the topological information provided by A+ in a Huber pair (A, A+)!
• We need Nisnevich excision for our potential replacement of Spa(A, A+) 7→ Perf(A)

(or even D(A))!
In order to record the topological information, the derived category D(A) of “quasi-coherent
modules” has two good analogues in the analytic setting, namely D(A, A+)■ and its full
subcategory Nuc(A, A+) = Nuc(A) (we write this last equality to stress the fact that the
information carried by A+ is lost in the category Nuc(A, A+) although it is incorporated into
the process of defining Nuc(A, A+)). Our first attempt is then to define

K(Spa(A, A+)) ?:= K(D(A, A+)■)

or
K(Spa(A, A+)) ?:= K(Nuc(A)).

However, there are two problems with them:
(i) The bigger category D(A, A+)■ is compactly generated, but its subcategory of com-

pact objects D(A, A+)ω
■ is too big to have nonzero K(−).
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(ii) The less big category Nuc(A) is not compactly generated, hence we cannot apply
Thomason’s K-theory K(−) to it (recall that the latter is only defined for compactly
generated categories).

To solve these problems, it would be better to work in between (i) and (ii).

6.2. Issues explained. We elaborate a little bit on the issues that have appeared in the
previous subsection.

6.2.1. Why does not K(Perf(A)) satisfies Nisnevich excision? Of course, Perf(A)
satisfies analytic descent and finite étale descent, so it satisfies Nisnevich descent. However,
the problem comes when applying K(−): there is no open-closed excision Verdier localising
sequence (in Catidem

st ) for Perf(−) on (even locally Tate) adic spaces, so that we do not obtain
Nisnevich descent after applying K(−).

Recall that the algebraic open-closed excision Verdier sequence is proved by looking at
D(A) which satsifies descent and admits an open-closed excision sequence. In the analytic
case, we should look at D((A, A+)■); but we are not able to recover such sequence for
Perf(−) in this way.

Solution: Nevertheless, by doing similarly, one can obtain an open-closed excision
Verdier sequence for Nuc(−) [And23, Lemma 5.11].

6.2.2. Why is D(A, A+)ω
■ too big? It contains all (A, A+)■[S], hence admits countable

products, so by Eilenberg’s swindle, namely using the Hilbert’s Hotel, we have

K(D(A, A+)ω
■) = ∗.

Solution: Consider a less big category than D((A, A+)■).

6.2.3. Why is not Nuc(A) compactly generated? We have seen in the proof of theorem
(1.4.1) that

Perf(A) = D(A)ω = D(A)dual ≃→ D((A, A+)■)dual = D((A, A+)■)ω ∩ Nuc(A) ⊂ Nuc(A)ω.

But we also have containment D((A, A+)■)ω ∩ Nuc(A) ⊃ Nuc(A)ω as can be seen via the
right adjointable map Nuc(A) → D(A, A+), whose right adjoint in PrL

st is (−)tr (6.3.2); so
it preserves colimits by definition of morphisms in PrL. Hence we have equivalences:

Perf(A) = D(A)ω = D(A)dual ≃→ D((A, A+)■)dual = D((A, A+)■)ω ∩ Nuc(A) = Nuc(A)ω,
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whence the following commutative diagram:

D(A) Nuc(A) D((A, A+)■)

Perf(A) = D(A)ω Nuc(A)ω D((A, A+)■)ω.

⊂

≃

⊂ ⊂

In particular, Nuc(A)ω compactly generates only the full subcategory D(A) ⊂ Nuc(A).
Solution/Question: Can one extend the non-connective K-theory K(−) beyond com-

pactly generated categories? Yes! One can extend it to dualisable categories.

6.3. Dualisable ∞-categories.

6.3.1. Definition (Lurie). A presentable stable∞-category C is dualisable if it is a dualisable
object in the symmetric monoidal ∞-category PrL

st endowed with Lurie’s tensor product, or
equivalently, if it is a retract in PrL

(st) of compact generated ∞-category.

A canonical choice of this retract is the “unusual Yoneda embedding” with cone the
Calkin category of C

C ŷ
↪→ Ind(Cω1)→ Calkω1(C),

whose right adjoints (in PrL
st) are

C colim← Ind(Cω1)←↩ Calkω1(C).

Moreover, it can be shown that Calkω1(C) is compactly generated; its full subcategory of
compact objects is denoted by Calkω1(C)ω.

6.3.2. Theorem. Let (A, A+) be a (complete) Huber pair. Then the ∞-category Nuc(A) is
dualisable. More precisely, the fully faithful embedding Nuc(A) ⊂ D((A, A+)■) admits an
explicit retract in PrL

st (i.e. a retract in Cat∞ that preserves colimits) given by

(−)tr : D((A, A+)■)→ Nuc(A), M 7→M tr := lim−→
P ∈D((A,A+)■)ω

A→P ⊗L
(A,A+)■

M

P ∨

= lim−→
S∈EDS

A→(A,A+)■[S]⊗(L)
(A,A+)■

M

C(S, A).

In particular, Nuc(A) is a dualisable object in PrL
st,/Perf(A).
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In other words, via identification D((A, A+)■) ≃ Funex(D((A, A+)■)ω,Sp), the object
M tr is identified with the functor

P 7→ (P ∨ ⊗L
(A,A+)■ M)(∗).

6.4. Nuclear-continuous K-theory.

6.4.1. Before introducing Efimov’s K-theory, let us fix some notations. Let PrL,dual
st be the

subcategory of PrL
st consisting of dualisable objects; the morphisms are right adjointable

ones (in PrL,dual
st ), i.e. the morphisms whose right adjoint preserves colimits; hence, there

is a faithful but not full embedding PrL,dual
st → PrL

st. Let Catperf
∞ be the category of small

idempotent complete stable ∞-categories; the morphisms are exact morphisms; there is a
fully faithful embedding Catperf

∞ → PrL,dual
st sending C 7→ Ind(C); its essential image is the

full subcategory PrL,cg
st ⊂ PrL,dual

st consisting of compactly generated categories.

6.4.2. Efimov’s K-theory. According to Lurie, the dualisable categories are precisely re-
tracts in PrL

st of compactly generated categories.
With the idea that K(−) extends to the larger class of dualisable categories by sending

Verdier sequence to fiber sequence, and recalling the following canonical Verdier sequence in
PrL

st

C ŷ
↪→ Ind(Cω1)→ Calkω1(C),

Efimov defines the K-theory for dualisable categories C as

KEf(C) := fib(K(Ind(Cω1))→ K(Calkω1(C)))

≃ fib(K(Cω1)→ K(Calkω1(C)ω))

≃ fib(∗ → K(Calkω1(C)ω))

≃ ΩK(Calkω1(C)ω).

Here K(Cω1) = ∗ by the Hilbert’s Hotel arguement; the same holds if one replace ω1 by any
other (uncountable) regular cardinal κ > ω.

One checks easily that if C is compactly generated, then

KEf(C) = ΩK(Calkω1(C)ω) ≃ K(Cω),

so Efimov’s K-theory KEf indeed extends K(−).
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6.4.3. Remark. The procedure K 7→ KEf can be done for any localising invariant F ∈
Fun(Catperf

∞ , V ), and associates with it a (unique) localising invariant Fcont ∈ Fun(PrL,dual
st , V )

such that Fcont ◦ Ind = F :

Theorem (Efimov). Let V be a stable ∞-category (of coefficients). Then the natural map

Fun(PrL,dual
st , V )→ Fun(Catperf

∞ , V ), G 7→ G ◦ Ind

induces an equivalence between the full subcategories of localising invariants (i.e. functors
preserving final objects and sending Verdier localising sequences to fiber sequences). The
inverse is given by the continuous extension map

(Fcont : C 7→ ΩF (Calkω1(C)ω))←[ F

constructed via the arguments of the above discussion (Hilbert’s Hotel, etc.).

The stability of V may not be essential, and can be replaced by any “minimal” condition
that guarantee the well-posedness of the theorem.

6.4.4. Definition (Nuclear-continuous K-theory). For any (complete) Huber pair (A, A+),
the ∞-category Nuc(A) is dualisable, so we can define

Knuc(A) := KEf(Nuc(A)), Knuc(A) := Ω∞Knuc(A),

This extends to arbitrary sheafy and locally Tate adic spaces X, since Knuc(−) satisfies
analytic descent on sheafy and locally Tate affinoids.

Combined with Nisnevich descent of Nuc(−) and the open-closed excision Verdier se-
quence for Nuc(−), this implies that Knuc(−) satisfies Nisnevich descent.

6.5. Continuous K-theory.

6.5.1. Definition. Let (A0, I) be an adic pair, i.e. I ⊂ A0 is a finitely generated ideal
of the ring A0, which is endowed with I-adic topology for which it is complete. In this
situation, one defines the (non-connective) continuous K-theory Kcont(A0) (à la Morrow)
without appealing to the condensed mathematics, namely as

Kcont(A0) := lim←−
n

K(A0/In),

which underlies the pro-spectrum “ lim←−
′′
n

K(A0/In) or the condensed spectrum

Kcont(A0) := lim←−
n

K(A0/In) ∈ Cond(Sp).
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This definition plays a central role in the classical approach to the K-theory for rigid-
analytic spaces.

If moreover the ideal I is weakly pro-regular (which is always the case in rigid-analytic
geometry and more generally if (A0, I) is a pair of definition of a complete Huber ring that
is Tate), Andreychev’s nuclear-continuous K-theory and the classical definition agree by the
following theorem due to Efimov.

6.5.2. Theorem (Efimov’s Continuity Theorem, cf. report here). Let (A0, I) be an adic pair,
where the finitely generated ideal of definition I ⊂ A0 is weakly pro-regular. Then the natural
maps

Knuc(A0)→ Kcont(A0/In) ≃ K(A0/In), n ≥ 0
induce isomosphisms in the ∞-category Sp

Knuc(A0) ≃→ Kcont(A0) = lim←−
n

K(A0/In).

6.5.3. Definition. For any Tate complete Huber ring A with a pair of definition (A0, I) and
a pseudouniformiser ϖ ∈ A×∩A◦◦

0 (so that A = A0[ 1
ϖ

]), one defines the continuous K-theory
Kcont(A) as the pushout

(6.5.3.1)
K(A0) K(A)

Kcont(A0) Kcont(A)

within the (stable) ∞-category prolight(Sp).

It is well-defined (i.e. does not depend on the choice of (A0, I) for the given A) up to
weak equivalence (i.e. becoming an equivalence when applying the functor prolight(Sp) →
prolight(Sp+)) [KST19, Proposition 5.4].

The hereby defined continuous K-theory of Tate rings is then globalised into rigid-
analytic spaces by the so-called pro-cdh descent. The obvious conceptual problem of this
approach, namely the fact that all constructions are somewhat ad hoc (one needs to check
well-definedness and functoriality), means that the proofs are difficult to grasp in the non-
Noetherian case. In particular, it is not clear how to prove the descent for general analytical
adic spaces (e.g. perfectoid spaces). However, with Andreychev’s more abstract definition,
we can prove the optimal descent theorem.

For this, we show the following consequence of Efimov’s Continuity Theorem (6.5.2):

https://publications.mfo.de/handle/mfo/3971
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6.5.4. Theorem. For Tate complete Huber rings, the two definitions of analytic K-theory,
namely the continuous one and the nuclear-continuous one, match naturally, i.e. there is a
natural isomorphism of spectra

Kcont(A) ≃→ Knuc(A).

Proof. Indeed, observe the following diagram:

(6.5.4.1)
Tor(ϖ∞) D(A0) D(A0[ 1

ϖ
])

Tornuc(ϖ∞) Nuc(A0) Nuc(A0[ 1
ϖ

]).

L

L′

Here L and L′ denote the canonical localisation functors and Tor(ϖ∞) and Tornuc(ϖ∞)
denote their kernels. Then the function Tor(ϖ∞)→ Tornuc(ϖ∞) is an equivalence according
to [And23, Satz 4.11], hence the diagram

(6.5.4.2)
K(A0) K(A0[ 1

ϖ
])

Knuc(A0) Knuc(A0[ 1
ϖ

])

L

L′

is a pullpack-pushout square in the stable∞-category Sp. By Efimov’s Continuity Theorem
(6.5.2), we have Knuc(A0) ≃→ Kcont(A0), hence we get Kcont(A) ≃→ Knuc(A). □

6.6. Condensed nuclear-continuous K-theory. It is possible to upgrade the isomor-
phism of spectra (6.5.4) to an isomorphism of condensed spectra. For this, we first upgrade
Knuc(A) to a condensed spectra Knuc(A).

6.6.1. Construction. Let (A, A+) be a (complete) Huber pair. Recall that for any profinite
set S, the object Spa(A, A+)×S is the well-defined adic space associated with the (complete)
Huber pair (C(S, A), C(S, A+)). Consider the presheaf

Knuc(A) : ProF in→ Sp

S 7→ Knuc(C(S, A))

Of course, it sends finite disjoint union to products, so defines a sheaf on EDS.
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6.6.2. Theorem. Let (A0, I) be an adic pair with I ⊂ A0 weakly pro-regular ideal. The
presheaf Knuc(A0) is a sheaf on ProF in. More precisely, for any profinite set S and any
hypercovering S• → S by extremally disconnected sets, we have a natural isomorphism

Knuc(C(S, A0)) ≃→ lim←−
∆

Knuc(C(S•, A0)).

Proof. (Indicated by Clausen) We have a Z■-solid algebra A0 = lim←−n
A0/In. Since the

natural map
colim∆op Z[S•]→ Z[S]

becomes an equivalence after Z■-solidification [CS19, Proposition 5.6], after taking (external)
R Hom(−, A0) we obtain a cosimplicial resolution (of rings)

C(S, A0) ≃→ lim
∆

C(S•, A0).

By Efimov’s Continuity Theorem (6.5.2), there is a natural isomorphism of spectra

Knuc(C(S, A0)) ≃→ lim←−
n

K(C(S, A0/In)).

We claim that
K(C(S, A0/In)) ≃→ lim

∆
K(C(S•, A0/In)), n ∈ N.

Indeed, by writing the hypercovering S• → S as a cofiltered limit of hypercoverings S•,j → Sj

(indexed by j ∈ J) of finite sets by finite sets, which in particular splits, we have

K(C(Sj, A0/In)) ≃→ lim
∆

K(C(S•,j, A0/In)).

Now take the filtered colimit with respect to j ∈ Jop: as the algebraic K-theory K(−)
commutes with filtered colimits of rings and C(S, A0/In) = lim−→j

C(Sj, A0/In), similarly
termwisely C(S•, A0/In) = lim−→j

C(S•,j, A0/In), we obtain

K(C(S, A0/In)) ≃ lim−→
j

K(C(Sj, A0/In)) ≃→ lim−→
j

lim
∆

K(C(S•,j, A0/In))

≃→ lim
∆

lim−→
j

K(C(S•,j, A0/In))

≃ lim
∆

K(C(S•, A0/In))

The second to last isomorphism can be seen by comparing the convergent spectral sequences

Ep,q
1,(j) = π−q(K(C(Sp,j, A0/In)))⇒ π−(p+q)(K(C(Sj, A0/In)))

Ep,q
1 = π−q(K(C(Sp, A0/In)))⇒ π−(p+q)(K(C(S, A0/In))).
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Indeed, π−(p+q) commutes with filtered colimits, and

π−qK(C(T, A0/In)) ≃ Map(T, π−qK(A0/In)) ≃ C(T, Z)⊗Z π−qK(A0/In)

for any finite set T , so the the above spectral sequences degenerates already at the page E1

by exactness of the complexes

0→ C(Sj, Z)→ C(S1,j, Z)→ C(S2,j, Z)→ · · · , j ∈ J.

□

6.6.3. Corollary. For any Tate complete Huber ring A, we have a natural morphism

Knuc(C(S, A)) ≃→ lim←−
∆

Knuc(C(S•, A0)),

in particular, Knuc(A) is a sheaf on ProF in.

Proof. This follows from the theorem as in the proof of (6.5.4), using the diagram (6.5.4.2).
□

6.6.4. Theorem. For any Tate complete Huber ring A, there is a natural morphism of
condensed spectra

Kcont(A) ≃→ Knuc(A).

Proof. For any profinite set S, the topological ring C(S, A) is still a Tate complete Huber
ring, so we may apply theorem (6.5.4) to conclude. □
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